高考數(shù)學一輪復習 第七章 不等式 第二節(jié) 一元二次不等式及其解法課件 文_第1頁
高考數(shù)學一輪復習 第七章 不等式 第二節(jié) 一元二次不等式及其解法課件 文_第2頁
高考數(shù)學一輪復習 第七章 不等式 第二節(jié) 一元二次不等式及其解法課件 文_第3頁
高考數(shù)學一輪復習 第七章 不等式 第二節(jié) 一元二次不等式及其解法課件 文_第4頁
高考數(shù)學一輪復習 第七章 不等式 第二節(jié) 一元二次不等式及其解法課件 文_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第二節(jié)一元二次不等式及其解法總綱目錄教材研讀1.“三個二次”的關(guān)系考點突破2. (x-a)(x-b)0和和(x-a)(x-b)0=00)的圖象一元二次方程ax2+bx+c=0(a0)的根有兩相異實根x1,x2(x10(a0)的解集x|xx2 x|xx1 R ax2+bx+c0)的解集x|x1x0和和(x-a)(x-b)0型不等式的解集型不等式的解集口訣:大于取兩邊,小于取中間. 不等式解集ab(x-a)(x-b)0 x|xbx|xa x|xa (x-a)(x-b)0 x|axb x|bxa1.不等式x2-3x+20的解集為()A.(-,-2)(-1,+) B.(-2,-1)C.(-,1)(2,

2、+) D.(1,2)答案答案 D將x2-3x+20化為(x-1)(x-2)0,解得1x0的解集為(-,-2),則m=()A. B. C. D. 2,3127123456C答案答案 C由已知可得-2,-為方程mx2+2x+1=0的兩根,故解得m=,故選C.23222,3212,3mm 343.不等式0的解集為()A.x|x1或x3 B.x|1x3C.x|1x3 D.x|1x331xxC答案答案 C由0,得解得1x3.31xx(3)(1)0,10,xxx 4.不等式x2+ax+40的解集不是空集,則實數(shù)a的取值范圍是 .(-,-44,+)答案答案(-,-44,+)解析解析由題意得=a2-160,即

3、a216,a的取值范圍是(-,-44,+).5.不等式1或或x1或x-1解析解析 10 x1或x-1.21x 2(1)1xx11xx典例典例1(1)不等式-2x2+x-3的解集為()A. B.C. D.(2)解關(guān)于x的不等式:x2-(a+1)x+a0.3|12xx3| 12xx 3|12x xx 或3|12x xx 或考點一一元二次不等式的解法考點一一元二次不等式的解法考點突破考點突破答案答案(1)D 解析解析(1)-2x2+x0,=250,方程2x2-x-3=0的兩實根為x1=-1,x2=,2x2-x-30的解集為.(2)由x2-(a+1)x+a=0,得(x-a)(x-1)=0,x1=a,x

4、2=1,當a1時,x2-(a+1)x+a0的解集為x|1xa;當a=1時,x2-(a+1)x+a0的解集為;當a1時,x2-(a+1)x+a0的解集為x|ax1.323|12x xx 或探究探究若將本例(2)中的不等式改為ax2-(a+1)x+10,如何求解?解析解析若a=0,原不等式等價于-x+11.若a0,解得x1.若a0,原不等式等價于(x-1)0.當a=1時,=1,(x-1)1時,1,解(x-1)0,得x1;當0a1,1xa1a1xa1a1xa1a1xa1a1a解(x-1)0,得1x.綜上所述,當a1;當0a1時,解集為.1xa1a1|1x xxa或1|1xxa1|1xxa方法技巧方法

5、技巧一元二次不等式的解法(1)對于常系數(shù)一元二次不等式,可以用分解因式法或判別式法求解,題目簡單,情況單一.(2)含有參數(shù)的不等式的求解,往往需要對參數(shù)進行分類討論.若二次項系數(shù)為常數(shù),需先將二次項系數(shù)化為正數(shù),再考慮分解因式,對參數(shù)進行分類討論,若不易分解因式,則可依據(jù)判別式符號進行分類討論;若二次項系數(shù)為參數(shù),則應先考慮二次項系數(shù)是否為零,以確定不等式是一次不等式還是二次不等式,再討論二次項系數(shù)不為零的情形,以便確定解集的形式;對方程的根進行討論,比較大小,以便寫出解集.(3)若一元二次不等式的解集為區(qū)間的形式,則區(qū)間的端點值恰對應相應的一元二次方程的根,要注意解集的形式與二次項系數(shù)的聯(lián)系

6、.提醒當不等式中二次項的系數(shù)含有參數(shù)時,不要忘記討論其等于0的情況.1-1若不等式ax2+bx+20的解集為,則不等式2x2+bx+a0的解集是 .11|23xxx|-2x3答案答案x|-2x3解析解析由題意,知-和是一元二次方程ax2+bx+2=0的兩根且a0,所以解得則不等式2x2+bx+a0,121311,23112,23baa 12,2.ab 即2x2-2x-120,其解集為x|-2xa2(aR)的解集.解析解析12x2-axa2,12x2-ax-a20,即(4x+a)(3x-a)0.令(4x+a)(3x-a)=0,解得x1=-,x2=.當a0時,-,不等式的解集為;當a=0時,-=0

7、,不等式的解集為x|xR且x0;當a,不等式的解集為.綜上所述,當a0時,不等式的解集為;當a=0時,不等式的解集為x|xR且x0;當a0時,不等式的解集為.4a3a4a3a|43aax xx 或4a3a4a3a|34aax xx 或|43aax xx 或|34aax xx 或考點二一元二次不等式的恒成立問題考點二一元二次不等式的恒成立問題命題方向命題視角在R上的恒成立問題由不等式在R上恒成立求參數(shù)的取值范圍在給定區(qū)間上的恒成立問題由不等式在某一區(qū)間上恒成立求參數(shù)的取值范圍給定參數(shù)范圍的恒成立問題給出參數(shù)的范圍,求自變量的取值范圍典例典例2若一元二次不等式2kx2+kx-0對一切實數(shù)x都成立,

8、則k的取值范圍為()A.(-3,0 B.-3,0) C.-3,0 D.(-3,0)38命題方向一在命題方向一在R上的恒成立問題上的恒成立問題D答案答案 D解析解析設(shè)f(x)=2kx2+kx-,2kx2+kx-0為一元二次不等式,k0,2kx2+kx-0對一切實數(shù)x都成立,即函數(shù)f(x)=2kx2+kx-的圖象全部在x軸的下方,則有解得-3k0.38383838220,3420,8kkk 典例典例3設(shè)函數(shù)f(x)=mx2-mx-1(m0),若對于x1,3, f(x)-m+5恒成立,求m的取值范圍.命題方向二在給定區(qū)間上的恒成立問題命題方向二在給定區(qū)間上的恒成立問題解析解析 f(x)-m+5即mx

9、2-mx+m-60,則問題轉(zhuǎn)化為mx2-mx+m-60時,g(x)在1,3上是增函數(shù).所以g(x)max=g(3)=7m-60.所以m,則0m.當m0時,g(x)在1,3上是減函數(shù),所以g(x)max=g(1)=m-60,所以m6,所以m0,又因為m(x2-x+1)-60,所以m.因為y=在1,3上的最小值為,所以只需m即可.又因為m0,所以m的取值范圍是.6|007mmm或212x34261xx261xx261324x67676|007m mm或典例典例4對任意m-1,1,函數(shù)f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范圍.命題方向三給定參數(shù)范圍的恒成立問題命題方向三給定

10、參數(shù)范圍的恒成立問題解析解析 f(x)=x2+(m-4)x+4-2m=(x-2)m+x2-4x+4,令g(m)=(x-2)m+x2-4x+4.由題意知在-1,1上,g(m)的值恒大于零,解得x3.故當x3時,對任意的m-1,1,函數(shù)f(x)的值恒大于零.22( 1)(2) ( 1)440,(1)(2) 1440,gxxxgxxx 方法技巧方法技巧(1)對于一元二次不等式恒成立問題,恒大于0就是相應的二次函數(shù)的圖象在給定的區(qū)間上全部在x軸上方,恒小于0就是相應的二次函數(shù)的圖象在給定的區(qū)間上全部在x軸下方.另外常轉(zhuǎn)化為求二次函數(shù)的最值或用分離參數(shù)法求最值.(2)解決恒成立問題一定要清楚選誰為自變量

11、,誰是參數(shù),一般地,知道誰的范圍,就選誰當自變量,求誰的范圍,誰就是參數(shù).2-1 設(shè)a為常數(shù),xR,ax2+ax+10,則a的取值范圍是()A.(0,4) B.0,4) C.(0,+) D.(-,4)B答案答案 B xR,ax2+ax+10,則必有或a=0,0a4.20,40aaa2-2已知函數(shù)f(x)=x2+mx-1,若對于任意xm,m+1,都有f(x)0成立,則實數(shù)m的取值范圍是 .2,02答案答案 2,02解析解析要滿足f(x)=x2+mx-10對于任意xm,m+1恒成立,只需即解得-m0.( )0,(1)0,f mf m22210,(1)(1) 10,mmm m 22典例典例5甲廠以x

12、千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1x10),每小時可獲得的利潤是100元.(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3 000元,求x的取值范圍;(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,則甲廠應該選取何種生產(chǎn)速度?并求最大利潤.351xx 考點三一元二次不等式的應用考點三一元二次不等式的應用解析解析(1)根據(jù)題意,得2003 000,351xx 整理得5x-14-0,即5x2-14x-30,又1x10,可解得3x10.即要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3 000元,x的取值范圍是3,10.(2)設(shè)利潤為y元,則y=100=9104=9104,故當x=6時,ymax=45

13、7 500.即甲廠以6千克/小時的生產(chǎn)速度生產(chǎn)900千克該產(chǎn)品時獲得的利潤最3x900 x351xx 2135xx211613612x大,最大利潤為457 500元.規(guī)律總結(jié)規(guī)律總結(jié)求解不等式應用題的四個步驟(1)閱讀理解,認真審題,把握問題中的關(guān)鍵量,找準不等關(guān)系.(2)引進數(shù)學符號,將文字信息轉(zhuǎn)化為符號語言,用不等式表示不等關(guān)系,建立相應的數(shù)學模型.(3)解不等式,得出數(shù)學結(jié)論,要注意數(shù)學模型中自變量的實際意義.(4)回歸實際問題,將數(shù)學結(jié)論還原為實際問題的結(jié)果.3-1某商品每件成本價為80元,售價為100元,每天售出100件.若售價降低x成(1成=10%),售出商品數(shù)量就增加x成.要求售價不能低于成本價.(1)設(shè)該商品一天的營業(yè)額為y元,試求y與x之間的函數(shù)關(guān)系式y(tǒng)=f(x),并寫出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論