版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、方程的根與函數(shù)的零點(diǎn)一、教材地位和作用本節(jié)課是普通高中實(shí)驗(yàn)教科書人教A版必修1第三章第一單元第一節(jié),是后繼學(xué)習(xí)二分法的理論準(zhǔn)備。學(xué)生通過了解函數(shù)零點(diǎn)與方程根的聯(lián)系,從而把求方程根的問題轉(zhuǎn)化為求函數(shù)零點(diǎn)的問題。作為函數(shù)應(yīng)用的第一課時(shí),就是要讓學(xué)生認(rèn)識(shí)到函數(shù)與其他數(shù)學(xué)知識(shí)的聯(lián)系,讓學(xué)生用函數(shù)的圖象這個(gè)“形”來研究方程的根這個(gè)“數(shù)”,深刻體會(huì)“以形助數(shù)”的思想方法二、學(xué)情分析(1)知識(shí)基礎(chǔ):學(xué)生已經(jīng)熟練掌握一次、二次方程的求解方法,掌握了一些基本初等函數(shù)圖象的畫法,并能從圖象中獲取一定信息,這是學(xué)習(xí)本節(jié)課的知識(shí)基礎(chǔ)。(2)心理準(zhǔn)備:公式法求解高次、超越方程的思維受挫是學(xué)生學(xué)習(xí)本節(jié)課的內(nèi)在動(dòng)機(jī)。三、教
2、學(xué)目標(biāo)1、知識(shí)與技能:結(jié)合具體的二次函數(shù)圖象,判斷二次方程根的存在性,從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,形成函數(shù)零點(diǎn)的概念及零點(diǎn)存在的判定方法。2、過程與方法:在應(yīng)用函數(shù)研究方程的過程中,體會(huì)函數(shù)與方程思想,數(shù)形結(jié)合思想以及化歸思想;把從特殊函數(shù)零點(diǎn)存在的判定方法上升到一般函數(shù),體現(xiàn)了從特殊到一般的研究方法。3、情感態(tài)度價(jià)值觀:在求解方程根的“山窮水盡”,到研究函數(shù)零點(diǎn)的“柳暗花明”,學(xué)生了解數(shù)學(xué)的發(fā)展史,感受探究的樂趣。四、教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵(1)重點(diǎn):零點(diǎn)存在定理的發(fā)現(xiàn)。(2)難點(diǎn):零點(diǎn)存在定理的發(fā)現(xiàn)與準(zhǔn)確理解。(3)關(guān)鍵:引導(dǎo)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)研究方程的根。五、教法與學(xué)法(一)教法設(shè)計(jì)
3、:本節(jié)課借鑒發(fā)現(xiàn)教學(xué)法,強(qiáng)調(diào)教師學(xué)生雙主體,采用“創(chuàng)設(shè)問題情境師生共同探究形成概念結(jié)論應(yīng)用鞏固提高”的教學(xué)模式,使學(xué)生在獲得知識(shí)的同時(shí),能夠掌握方法、提升能力(二)學(xué)法指導(dǎo):讓學(xué)生在自主探究中,學(xué)會(huì)發(fā)現(xiàn)問題并解決問題,逐步形成敢于發(fā)現(xiàn)、敢于質(zhì)疑的科學(xué)態(tài)度。六、教學(xué)過程教學(xué)過程教學(xué)內(nèi)容師生互動(dòng)理論依據(jù)及設(shè)計(jì)意圖創(chuàng)設(shè)情境揭示課題1、 問題一:(1)解方程 ;(2)解方程(3)你能求方程的根嗎?學(xué)生思考方程(3)時(shí),遇到障礙,思路受阻發(fā)現(xiàn)教學(xué)法強(qiáng)調(diào)教師創(chuàng)設(shè)問題情境,造成學(xué)生強(qiáng)烈的問題意識(shí),激發(fā)學(xué)生學(xué)習(xí)的動(dòng)機(jī)。通過三個(gè)問題引起認(rèn)知沖突,尋找到本節(jié)課的知識(shí)生長點(diǎn)。2、史料分析,引導(dǎo)新法:一次、二次方程,
4、很容易求解,對(duì)于三次、四次方程,在16世紀(jì),數(shù)學(xué)家也找到了一般的根式解法,但直到19世紀(jì),阿貝爾、伽羅瓦等數(shù)學(xué)家才發(fā)現(xiàn),其實(shí)高于四次以及含有指數(shù)對(duì)數(shù)形式的方程,沒有根式解法,因此對(duì)于方程(3)我們必須另辟蹊徑教學(xué)中融入數(shù)學(xué)史,激發(fā)學(xué)生的學(xué)習(xí)興趣數(shù)學(xué)史引導(dǎo)我們同化不行,則要順應(yīng)3、問題二:對(duì)方程,你能說出方程的根與對(duì)應(yīng)二次函數(shù)圖象的關(guān)系嗎?學(xué)生給出答案后,教師總結(jié)要點(diǎn):以全新角度審視二次方程,有助于學(xué)生形成函數(shù)的意識(shí),有利于培養(yǎng)學(xué)生思維的發(fā)散性與靈活性,為后面利用函數(shù)圖象探究零點(diǎn)存在性作了鋪墊4、問題三:一般地,一元二次方程的根與二次函數(shù)的圖象有什么關(guān)系呢?學(xué)生易得:師生結(jié)合二次函數(shù)圖象說出方程
5、根的個(gè)數(shù)和圖象與x軸交點(diǎn)個(gè)數(shù)的關(guān)系教師指出:函數(shù)值為0時(shí)的自變量x值起到了聯(lián)結(jié)方程與函數(shù)的作用,這個(gè)數(shù)稱之為函數(shù)的零點(diǎn)從特殊到一般,學(xué)生體驗(yàn)得到升華互動(dòng)交流研討新知1、函數(shù)零點(diǎn)的定義:對(duì)于函數(shù),把使的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)。教師敘述并板書定義讓學(xué)生加深對(duì)函數(shù)零點(diǎn)定義的感知2、深化概念:零點(diǎn)不是點(diǎn),是函數(shù)值為0時(shí)自變量x的值,是函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)方程有實(shí)數(shù)根圖象與x軸有交點(diǎn)函數(shù)有零點(diǎn);零點(diǎn)作用:可以通過函數(shù)零點(diǎn)間接研究方程的根教師設(shè)置問題學(xué)生主動(dòng)思考,積極回答讓學(xué)生加深對(duì)函數(shù)零點(diǎn)概念的理解3、探究:已知函數(shù)y=f(x)的圖象:(1)函數(shù)有無零點(diǎn),在什么區(qū)間?(2)你是如何確定零點(diǎn)所在區(qū)間的
6、?(3)能否找到判斷函數(shù)y=f(x)在區(qū)間(a,b)上有零點(diǎn)的一般方法?(1)的解答:學(xué)生一般會(huì)說區(qū)間,教師引導(dǎo)觀察區(qū)間零點(diǎn)情況,為第(3)問做鋪墊發(fā)現(xiàn)教學(xué)法強(qiáng)調(diào)直覺思維,充分利用直覺思維提出各種有益于問題解決的可能性讓學(xué)生在思考、操作中體會(huì)用函數(shù)圖象分析函數(shù)零點(diǎn)存在的過程,直觀感知零點(diǎn)存在定理中的條件與結(jié)論,突出本節(jié)課的重點(diǎn),突破了難點(diǎn)(2)的解答:學(xué)生發(fā)表觀點(diǎn),教師引導(dǎo),先以區(qū)間為例,研究的符號(hào),教師板書結(jié)果。教師進(jìn)一步引導(dǎo)學(xué)生就區(qū)間,(),進(jìn)行類似研究,一一板書結(jié)果,為第(3)問進(jìn)一步做鋪墊。(3)的解答:分析(2)的結(jié)果,學(xué)生嘗試表達(dá)結(jié)論:若則在內(nèi)有零點(diǎn)。教師提問:結(jié)論對(duì)本題函數(shù)成立,
7、對(duì)其它函數(shù)呢?留給學(xué)生時(shí)間思考,學(xué)生可能會(huì)舉出反例,如在(,1)上無零點(diǎn)。然后,教師對(duì)探究題的圖象進(jìn)行截?cái)嘞蛏掀揭铺幚恚瑥亩玫椒蠢?。讓學(xué)生發(fā)現(xiàn)結(jié)論有紕漏,應(yīng)增加條件:函數(shù)圖象連續(xù)。4、零點(diǎn)存在判定定理:如果函數(shù)在a,b上的圖象是連續(xù)不斷的一條曲線,且有,那么在區(qū)間內(nèi)一定有零點(diǎn),即存在,也就是方程的根。教師引導(dǎo)學(xué)生嘗試表述定理學(xué)生對(duì)定理的兩個(gè)條件認(rèn)識(shí)已經(jīng)成熟,適時(shí)升華,從而進(jìn)一步突破本節(jié)課的難點(diǎn)5、問題探究,深化理解:問題一:零點(diǎn)存在判定定理中結(jié)論是“有零點(diǎn)”,那么有幾個(gè)?問題二:若函數(shù)上的圖象是連續(xù)不斷的一條曲線,那么上存在零點(diǎn),反之成立嗎?問題三:考慮函數(shù)的圖象,它們的單調(diào)性對(duì)函數(shù)零點(diǎn)個(gè)數(shù)
8、有影響嗎?激發(fā)學(xué)生思考、畫圖,發(fā)表個(gè)人意見。對(duì)問題一,學(xué)生隨手畫圖,很可能出現(xiàn)有奇數(shù)個(gè)這個(gè)觀點(diǎn),教師抓好這個(gè)點(diǎn),反問并讓學(xué)生進(jìn)一步舉例說明問題二給出利用定理探求零點(diǎn)存在的局限性:即用零點(diǎn)存在判定定理,并不能求出所有的零點(diǎn)問題三說明函數(shù)性質(zhì)特別是單調(diào)性,對(duì)確定零點(diǎn)個(gè)數(shù)有重要作用完善對(duì)定理的認(rèn)識(shí),培養(yǎng)學(xué)生學(xué)習(xí)主動(dòng)性和創(chuàng)造性,通過設(shè)問質(zhì)疑讓學(xué)生進(jìn)一步全面深入地領(lǐng)悟定理的內(nèi)容。應(yīng)用舉例發(fā)展思維例1 求函數(shù)的零點(diǎn)個(gè)數(shù)。教師引導(dǎo)學(xué)生回到引例中的方程(3),讓學(xué)生嘗試用零點(diǎn)知識(shí)調(diào)整問法,出示例1。(1)培養(yǎng)學(xué)生問題意識(shí)(2)前后呼應(yīng)教師引導(dǎo)學(xué)生用計(jì)算器計(jì)算函數(shù)值,第一次直觀驗(yàn)證教師提出問題:在你得到的區(qū)間上
9、有幾個(gè)零點(diǎn),在其它區(qū)間上還有沒有零點(diǎn)?引導(dǎo)學(xué)生想到單調(diào)性和圖象,教師展示圖象,第二次直觀驗(yàn)證(3)學(xué)以致用(4)為二分法求解奠定基礎(chǔ)鞏固訓(xùn)練深化提高1、課本88頁練習(xí)題1、(1)(3)2、課本88頁練習(xí)題2、(4)練習(xí)1的(3):要啟發(fā)學(xué)生將“=”右邊的項(xiàng)移至左邊,也可將“=”左右兩邊的代數(shù)式分別設(shè)為函數(shù),畫兩個(gè)函數(shù)圖象求交點(diǎn)2、先讓學(xué)生大致描點(diǎn),然后用計(jì)算機(jī)給出圖象。歸納梳理整體升華請(qǐng)回顧本節(jié)課學(xué)了哪些內(nèi)容?主要數(shù)學(xué)思想又有哪些?你還有哪些收獲?學(xué)生思考回答教師總結(jié)通過小結(jié),進(jìn)一步完善學(xué)生的認(rèn)知結(jié)構(gòu),從知識(shí)與技能、過程與方法、情感三個(gè)方面回扣教學(xué)目標(biāo)。布置作業(yè)課堂延伸必做作業(yè):(1)課本88頁練習(xí)2、(1)(4),課本92頁:2 (2)了解數(shù)學(xué)史:研讀課本選修3-1第七講千古謎題伽羅瓦的解答選做作業(yè):你會(huì)用哪些方法探究方程的實(shí)根或其所在的大致區(qū)間。分必做和選做,體現(xiàn)了作業(yè)的選擇性,讓不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),進(jìn)一步體現(xiàn)新教材、新課程的理念,給學(xué)有余力的學(xué)生進(jìn)行課外提升七、教學(xué)設(shè)計(jì)的幾點(diǎn)說明1、板書設(shè)計(jì)方程的根與函數(shù)的零點(diǎn)函數(shù)的圖象函數(shù)零點(diǎn)的定義函數(shù)零點(diǎn)存在判定定理學(xué)生舉的各種圖象例子例1小結(jié)2、時(shí)間安排1創(chuàng)設(shè)情境,揭示課題62互動(dòng)交流,研討新知203應(yīng)用舉例,發(fā)展思維84鞏固訓(xùn)練,深化提高55歸納梳理,整體升華 56布置作業(yè),課堂延伸13、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度車身廣告創(chuàng)意內(nèi)容合作合同3篇
- 停車場(chǎng)照明系統(tǒng)升級(jí)合同2025版2篇
- 個(gè)人電子產(chǎn)品維修服務(wù)合同范文模板(2024版)3篇
- 2025年度企業(yè)融資貸款審批服務(wù)合同
- 二零二五年度啤酒節(jié)活動(dòng)贊助商權(quán)益保障合同
- 皮內(nèi)針項(xiàng)目可行性研究報(bào)告評(píng)審方案設(shè)計(jì)2025年立項(xiàng)標(biāo)準(zhǔn)案例范文
- 二零二五年度新能源儲(chǔ)能設(shè)備經(jīng)銷商合作協(xié)議模板4篇
- 2025年中國透明紙行業(yè)市場(chǎng)深度評(píng)估及投資方向研究報(bào)告
- 個(gè)人擔(dān)保合同(2024年度版):房產(chǎn)抵押貸款擔(dān)保2篇
- 2025年電纜塑料項(xiàng)目可行性研究報(bào)告
- 《醫(yī)院財(cái)務(wù)分析報(bào)告》課件
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合卷(含答案)
- 2024中國汽車后市場(chǎng)年度發(fā)展報(bào)告
- 感染性腹瀉的護(hù)理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 《人工智能基礎(chǔ)》全套英語教學(xué)課件(共7章)
- 廢鐵收購廠管理制度
- 物品賠償單范本
- 《水和廢水監(jiān)測(cè)》課件
- 滬教版六年級(jí)數(shù)學(xué)下冊(cè)課件【全冊(cè)】
評(píng)論
0/150
提交評(píng)論