不可思議的幾何──非歐幾何_第1頁
不可思議的幾何──非歐幾何_第2頁
不可思議的幾何──非歐幾何_第3頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、不可思議的幾何非歐幾何非歐幾何的來源非歐幾何學(xué)是一門大的數(shù)學(xué)分支,一般來講,他有廣義、狹義、通常意義這三個(gè)方面的不同含義。所謂廣義式泛指一切和歐幾里的幾何學(xué)不同的幾何學(xué),狹義的非歐幾何只是指羅式幾何來說的,至于通常意義的非歐幾何,就是指羅式幾何和黎曼幾何這兩種幾何。歐幾里得的幾何原本提出了五條公設(shè),長(zhǎng)期以來,數(shù)學(xué)家們發(fā)現(xiàn)第五公設(shè)和前四個(gè)公設(shè)比較起來,顯得文字?jǐn)⑹鋈唛L(zhǎng),而且也不那么顯而易見。有些數(shù)學(xué)家還注意到歐幾里得在幾何原本一書中直到第二十九個(gè)命題中才用到,而且以后再也沒有使用。也就是說,在幾何原本中可以不依靠第五公設(shè)而推出前二十八個(gè)命題。因此,一些數(shù)學(xué)家提出,第五公設(shè)能不能不作為公設(shè),而作為

2、定理?能不能依靠前四個(gè)公設(shè)來證明第五公設(shè)?這就是幾何發(fā)展史上最著名的,爭(zhēng)論了長(zhǎng)達(dá)兩千多年的關(guān)于“平行線理論”的討論。由于證明第五公設(shè)的問題始終得不到解決,人們逐漸懷疑證明的路子走的對(duì)不對(duì)?第五公設(shè)到底能不能證明?到了十九世紀(jì)二十年代,俄國喀山大學(xué)教授羅巴切夫斯基在證明第五公設(shè)的過程中,他走了另一條路子。他提出了一個(gè)和歐式平行公理相矛盾的命題,用它來代替第五公設(shè),然后與歐式幾何的前四個(gè)公設(shè)結(jié)合成一個(gè)公理系統(tǒng),展開一系列的推理。他認(rèn)為如果這個(gè)系統(tǒng)為基礎(chǔ)的推理中出現(xiàn)矛盾,就等于證明了第五公設(shè)。我們知道,這其實(shí)就是數(shù)學(xué)中的反證法。但是,在他極為細(xì)致深入的推理過程中,得出了一個(gè)又一個(gè)在直覺上匪夷所思,但

3、在邏輯上毫無矛盾的命題。最后,羅巴切夫斯基得出兩個(gè)重要的結(jié)論:第一,第五公設(shè)不能被證明。第二,在新的公理體系中展開的一連串推理,得到了一系列在邏輯上無矛盾的新的定理,并形成了新的理論。這個(gè)理論像歐式幾何一樣是完善的、嚴(yán)密的幾何學(xué)。這種幾何學(xué)被稱為羅巴切夫斯基幾何,簡(jiǎn)稱羅氏幾何。這是第一個(gè)被提出的非歐幾何學(xué)。從羅巴切夫斯基創(chuàng)立的非歐幾何學(xué)中,可以得出一個(gè)極為重要的、具有普遍意義的結(jié)論:邏輯上互不矛盾的一組假設(shè)都有可能提供一種幾何學(xué)。幾乎在羅巴切夫斯基創(chuàng)立非歐幾何學(xué)的同時(shí),匈牙利數(shù)學(xué)家鮑耶?雅諾什也發(fā)現(xiàn)了第五公設(shè)不可證明和非歐幾何學(xué)的存在。鮑耶在研究非歐幾何學(xué)的過程中也遭到了家庭、社會(huì)的冷漠對(duì)待。

4、他的父親數(shù)學(xué)家鮑耶?法爾卡什認(rèn)為研究第五公設(shè)是耗費(fèi)精力勞而無功的蠢事,勸他放棄這種研究。但鮑耶?雅諾什堅(jiān)持為發(fā)展新的幾何學(xué)而辛勤工作。終于在1832年,在他的父親的一本著作里,以附錄的形式發(fā)表了研究結(jié)果。那個(gè)時(shí)代被譽(yù)為“數(shù)學(xué)王子”的高斯也發(fā)現(xiàn)第五公設(shè)不能證明,并且研究了非歐幾何。但是高斯害怕這種理論會(huì)遭到當(dāng)時(shí)教會(huì)力量的打擊和迫害,不敢公開發(fā)表自己的研究成果,只是在書信中向自己的朋友表示了自己的看法,也不敢站出來公開支持羅巴切夫斯基、鮑耶他們的新理論。羅式幾何羅式幾何學(xué)的公理系統(tǒng)和歐式幾何學(xué)不同的地方僅僅是把歐式幾何平行公理用“從直線外一點(diǎn),至少可以做兩條直線和這條直線平行”來代替,其他公理基本

5、相同。由于平行公理不同,經(jīng)過演繹推理卻引出了一連串和歐式幾何內(nèi)容不同的新的幾何命題。我們知道,羅式幾何除了一個(gè)平行公理之外采用了歐式幾何的一切公理。因此,凡是不涉及到平行公理的幾何命題,在歐式幾何中如果是正確的,在羅式幾何中也同樣是正確的。在歐式幾何中,凡涉及到平行公理的命題,再羅式幾何中都不成立,他們都相應(yīng)地含有新的意義。下面舉幾個(gè)例子加以說明:歐式幾何同一直線的垂線和斜線相交。垂直于同一直線的兩條直線或向平行存在相似的多邊形。過不在同一直線上的三點(diǎn)可以做且僅能做一個(gè)圓。羅式幾何同一直線的垂線和斜線不一定相交。垂直于同一直線的兩條直線,當(dāng)兩端延長(zhǎng)的時(shí)候,離散到無窮。不存在相似的多邊形。過不在

6、同一直線上的三點(diǎn),不一定能做一個(gè)圓。從上面所列舉得羅式幾何的一些命題可以看到,這些命題和我們所習(xí)慣的直觀形象有矛盾。所以羅式幾何中的一些幾何事實(shí)沒有象歐式幾何那樣容易被接受。但是,數(shù)學(xué)家們經(jīng)過研究,提出可以用我們習(xí)慣的歐式幾何中的事實(shí)作一個(gè)直觀“模型”來解釋羅式幾何是正確的。1868年,意大利數(shù)學(xué)家貝特拉米發(fā)表了一篇著名論文非歐幾何解釋的嘗試,證明非歐幾何可以在歐幾里得空間的曲面(例如擬球曲面)上實(shí)現(xiàn)。這就是說,非歐幾何命題可以“翻譯”成相應(yīng)的歐幾里得幾何命題,如果歐幾里得幾何沒有矛盾,非歐幾何也就自然沒有矛盾。人們既然承認(rèn)歐幾里是沒有矛盾的,所以也就自然承認(rèn)非歐幾何沒有矛盾了。直到這時(shí),長(zhǎng)期

7、無人問津的非歐幾何才開始獲得學(xué)術(shù)界的普遍注意和深入研究,羅巴切夫斯基的獨(dú)創(chuàng)性研究也就由此得到學(xué)術(shù)界的高度評(píng)價(jià)和一致贊美,他本人則被人們贊譽(yù)為“幾何學(xué)中的哥白尼”。黎曼幾何歐氏幾何與羅氏幾何中關(guān)于結(jié)合公理、順序公理、連續(xù)公理及合同公理都是相同的,只是平行公理不一樣。歐式幾何講“過直線外一點(diǎn)有且只有一條直線與已知直線平行”。羅氏幾何講“過直線外一點(diǎn)至少存在兩條直線和已知直線平行”。那么是否存在這樣的幾何“過直線外一點(diǎn),不能做直線和已知直線平行”?黎曼幾何就回答了這個(gè)問題。黎曼幾何是德國數(shù)學(xué)家黎曼創(chuàng)立的。他在1851年所作的一篇論文論幾何學(xué)作為基礎(chǔ)的假設(shè)中明確的提出另一種幾何學(xué)的存在,開創(chuàng)了幾何學(xué)的

8、一片新的廣闊領(lǐng)域。黎曼幾何中的一條基本規(guī)定是:在同一平面內(nèi)任何兩條直線都有公共點(diǎn)(交點(diǎn))。在黎曼幾何學(xué)中不承認(rèn)平行線的存在,它的另一條公設(shè)講:直線可以無限演唱,但總的長(zhǎng)度是有限的。黎曼幾何的模型是一個(gè)經(jīng)過適當(dāng)“改進(jìn)”的球面。近代黎曼幾何在廣義相對(duì)論里得到了重要的應(yīng)用。在物理學(xué)家愛因斯坦的廣義相對(duì)論中的空間幾何就是黎曼幾何。在廣義相對(duì)論里,愛因斯坦放棄了關(guān)于時(shí)空均勻性的觀念,他認(rèn)為時(shí)空只是在充分小的空間里以一種近似性而均勻的,但是整個(gè)時(shí)空卻是不均勻的。在物理學(xué)中的這種解釋,恰恰是和黎曼幾何的觀念是相似的。此外,黎曼幾何在數(shù)學(xué)中也是一個(gè)重要的工具。它不僅是微分幾何的基礎(chǔ),也應(yīng)用在微分方程、變分法和復(fù)變函數(shù)論等方面。三種幾何的關(guān)系歐氏幾何、羅氏幾何、黎曼幾何是三種各有區(qū)別的幾何。這三中幾何各自所有的命題都構(gòu)成了一個(gè)嚴(yán)密的公理體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論