多面體和旋轉(zhuǎn)體的體積_第1頁
多面體和旋轉(zhuǎn)體的體積_第2頁
多面體和旋轉(zhuǎn)體的體積_第3頁
多面體和旋轉(zhuǎn)體的體積_第4頁
多面體和旋轉(zhuǎn)體的體積_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、三 多面體和旋轉(zhuǎn)體的體積2.7 體積的概念與公理幾何體占有空間部分的大小叫做它的體積體積 同讀量長度,面積一樣,要度量一個(gè)幾何體的體積,首先要選取一個(gè)單位體積單位體積作為標(biāo)準(zhǔn)。 然后求出幾何體的體積的體積是單位體積的多少倍,這個(gè)倍數(shù)倍數(shù)就是這個(gè)幾何體的體積的數(shù)值。 公理公理 5 長方體的體積等于它的長,寬,高的積。長方體的體積等于它的長,寬,高的積。 abcV長方體acb推論推論 1 長方體的體積等于它的底面積長方體的體積等于它的底面積s和高和高h(yuǎn)的積。的積。shV長方體推論推論 1 正方體的體積等于它的棱長的立方。正方體的體積等于它的棱長的立方。3aV正方體從公理 5 ,可以直接得到下面的推

2、論:(注:.ab=s 、h=s)(注:.a=b =c) 公理公理 6 夾在兩個(gè)平面間的兩個(gè)幾何體夾在兩個(gè)平面間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任被平行于這兩個(gè)平面的任意平面所截意平面所截,如果截得的兩個(gè)截面的面積總相等如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的那么這兩個(gè)幾何體的體積相等體積相等. 夾在平行平面,之間的兩個(gè)形狀不同的幾何體,被平行于平面 , 的任意一個(gè)平面所截,如果截面P和Q的面積相等,那么它們的體積一定相等。 例如,取一摞書或一摞紙張堆放在桌面上,將它如圖那樣改變一下形狀,這時(shí)高度沒有改變,每頁紙的面積也沒有改變,因而這摞書或紙的體積與變形前相等。PQ2.8 棱柱,圓

3、柱的體積 設(shè)有底面積面積都等于S,高都等于h的任意一個(gè)棱柱和一個(gè)圓柱,取一個(gè)與它們底面積相等,高也相等的長方體,使它們的下底面在同一個(gè)平面上。因?yàn)樗鼈兊纳系酌婧拖碌酌嫫叫校⑶腋叨枷嗟?,所以它們的上底面都在和平面平行的同一個(gè)平面內(nèi)。 用和平面平行的任意平面去截它們時(shí),所得的截面都和它們的底面分別全等,故這些截面的面積都等于S。根據(jù)定理定理6,它們的體積相等。 由于長方體的體積等于它的底面積和高的乘積,于是我們得到下面的定理: 定理定理 柱體(棱體,圓體)的體積等于它的面積柱體(棱體,圓體)的體積等于它的面積S和高和高h(yuǎn)的積。的積。shV柱體 例例1 有一堆相同規(guī)格的六角螺帽毛坯共重5.8kg。

4、已知底面六邊形的邊長是12mm,高是10mm,內(nèi)孔直徑是10mm.問約有毛坯多少個(gè)(鐵的比重是7.8g/cm3) 解解: 六角螺帽毛坯的體積是一個(gè)正六棱柱的體積與一個(gè)圓柱的體積的差.PNO)1074.31061243332mmV(正六棱柱)()(圓柱33210785.01021014.3mmV毛坯的體積毛坯的體積)(96.2)(1096.210785.01074.333333cmmmV)(105 . 2)96. 28 . 7(108 . 523個(gè)答:這堆毛坯約有250個(gè)個(gè)。2.9 棱錐,圓錐的體積CBAAShVCBAABC三棱柱BCABCCABABAS三角形BABS三角形BC高BC高BA高BA

5、高BCBS三角形CBCS三角形BABCV三棱錐BABCV三棱錐ABACV三棱錐BABCV三棱錐ShVVVVCBAABCCBCABABCABAC3131三棱柱三棱錐三棱錐三棱錐1s2s1h1hhhss 取任意兩個(gè)錐體,設(shè)它們的底面面積都是S,高都是H.把這兩個(gè)錐體放在同一個(gè)平面上,這時(shí)它們的頂點(diǎn)都在和平面平行的同一個(gè)平面內(nèi)。用平行于平面的任意平面去截它們,截面分別與底面相似。設(shè)截面與頂點(diǎn)的距離是h1,截面面積分別是S1,S2,那么.,212122122211sssssshhsshhss根據(jù)公理6,這兩的錐體的體積相等,及三棱錐的體積公式。由此我們可以得到下面的定理: 定理定理 等面積等高的兩的錐

6、體的體積相等。等面積等高的兩的錐體的體積相等。 定理定理 如果一個(gè)錐體(棱錐,圓錐)的底面積如果一個(gè)錐體(棱錐,圓錐)的底面積S,高是,高是h,那么它,那么它的體積是的體積是ShV31錐體 1.用棱長為1的正方體的體積作為體積單位右圖長方 體的體積的數(shù)值為36。假如將體積單位改用棱長 為2的正方體的體積,這個(gè)長方體的體積變?yōu)槎嗌??為什么?解解:原來以1為一個(gè)單位,現(xiàn)在以2為一個(gè)單位。 個(gè)體積單位長方體有262322故,這個(gè)長方體的體積是4.5 2.已知長方體形的銅塊長,寬,高分別是2cm,4cm,8cm,將它們?nèi)诨箬T成一個(gè)正方體形的銅塊,求鑄成的銅塊的棱長(不計(jì)損耗)。解:由柱體體積公式有:842 abcV長方體3aV正方體不計(jì)損耗)(48423cmaaVV正方體長方體所求棱長為4cm 3.如圖,將長方體沿相鄰三個(gè)面的對(duì)角線截取一個(gè)三棱錐。這個(gè)三棱錐的體積是長方體體積的幾分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論