版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、關(guān)于函數(shù)的最大值與最小值現(xiàn)在學(xué)習(xí)的是第一頁,共20頁一、復(fù)習(xí)引入一、復(fù)習(xí)引入 如果在如果在x0附近的左側(cè)附近的左側(cè) f/(x)0 ,右側(cè)右側(cè)f/(x)0 ,那么那么,f(x0)是極大值是極大值; 如果在如果在x0附近的左側(cè)附近的左側(cè) f/(x)0 ,那么那么,f(x0) 是極小值是極小值.2.導(dǎo)數(shù)為零的點是該點為極值點的必要條件導(dǎo)數(shù)為零的點是該點為極值點的必要條件,而不是充而不是充 分條件分條件.極值只能在函數(shù)的極值只能在函數(shù)的導(dǎo)數(shù)為零且在其附近左右兩側(cè)的導(dǎo)數(shù)為零且在其附近左右兩側(cè)的導(dǎo)數(shù)異號導(dǎo)數(shù)異號時取到時取到.3.在某些問題中在某些問題中,往往關(guān)心的是函數(shù)在一個定義區(qū)間上往往關(guān)心的是函數(shù)在一
2、個定義區(qū)間上, 哪個值最大哪個值最大,哪個值最小哪個值最小,而不是極值而不是極值.1.當(dāng)函數(shù)當(dāng)函數(shù)f(x)在在x0處連續(xù)時處連續(xù)時,判別判別f(x0)是極大是極大(小小)值的方法值的方法是是:現(xiàn)在學(xué)習(xí)的是第二頁,共20頁二、新課二、新課函數(shù)的最值函數(shù)的最值x xX X2 2o oa aX X3 3b bx x1 1y y 觀察右邊一個定義在觀察右邊一個定義在區(qū)間區(qū)間a,b上的函數(shù)上的函數(shù)y=f(x)的圖象,你能找的圖象,你能找出函數(shù)出函數(shù)y=f(x)在區(qū)間)在區(qū)間a,b上的最大值、最上的最大值、最小值嗎?小值嗎?發(fā)現(xiàn)圖中發(fā)現(xiàn)圖中_是極小值,是極小值,_是極大值,是極大值,在區(qū)間上的函數(shù)的最大值
3、是在區(qū)間上的函數(shù)的最大值是_,最小值是,最小值是_。f(x1)、f(x3)f(x2)f(b)f(x3) 問題在于如果在沒有給出函數(shù)圖象的情況下,怎樣才問題在于如果在沒有給出函數(shù)圖象的情況下,怎樣才能判斷出能判斷出f(x3)是最小值,而是最小值,而f(b)是最大值呢?是最大值呢? 現(xiàn)在學(xué)習(xí)的是第三頁,共20頁三、例題選講三、例題選講例例1:求函數(shù)求函數(shù)y=x4-2x2+5在區(qū)間在區(qū)間-2,2上的最大值與最小上的最大值與最小 值值.解解:.443xxy 令令 ,解得解得x=-1,0,1.0 y當(dāng)當(dāng)x變化時變化時, 的變化情況如下表的變化情況如下表:yy , x-2(-2,-1) -1 (-1,0)
4、 0(0,1) 1 (1,2) 2y -0 +0 -0 +y13 4 5 4 13從上表可知從上表可知,最大值是最大值是13,最小值是最小值是4.現(xiàn)在學(xué)習(xí)的是第四頁,共20頁 一般地,求函數(shù)一般地,求函數(shù)y=f(x)在在a,b上的最大值與最小值的上的最大值與最小值的步驟步驟如下:如下::求求y=f(x)在在(a,b)內(nèi)的極值內(nèi)的極值(極大值與極小值極大值與極小值); :將函數(shù)將函數(shù)y=f(x)的各極值與端點處的函數(shù)值的各極值與端點處的函數(shù)值f(a)、f(b) 比較比較,其中最大的一個為最大值其中最大的一個為最大值,最小的一個為最小值最小的一個為最小值. 求函數(shù)的最值時求函數(shù)的最值時,應(yīng)注意以下
5、幾點應(yīng)注意以下幾點:(1)函數(shù)的函數(shù)的極值是極值是在局部范圍內(nèi)討論問題在局部范圍內(nèi)討論問題,是一個是一個局部概局部概 念念,而函數(shù)的而函數(shù)的最值最值是對整個定義域而言是對整個定義域而言,是在整體范圍是在整體范圍 內(nèi)討論問題內(nèi)討論問題,是一個是一個整體性的概念整體性的概念.(2)閉區(qū)間閉區(qū)間a,b上的連續(xù)函數(shù)一定有最值上的連續(xù)函數(shù)一定有最值.開區(qū)間開區(qū)間(a,b)內(nèi)內(nèi) 的可導(dǎo)函數(shù)不一定有最值的可導(dǎo)函數(shù)不一定有最值,但若有唯一的極值但若有唯一的極值,則此極則此極 值必是函數(shù)的最值值必是函數(shù)的最值.現(xiàn)在學(xué)習(xí)的是第五頁,共20頁 (3)函數(shù)在其定義域上的最大值與最小值至多各有函數(shù)在其定義域上的最大值與
6、最小值至多各有一個一個,而函數(shù)的極值則可能不止一個而函數(shù)的極值則可能不止一個,也可能沒有極值也可能沒有極值,并且極大值并且極大值(極小值極小值)不一定就是最大值不一定就是最大值(最小值最小值),但除但除端點外在區(qū)間內(nèi)部的最大值端點外在區(qū)間內(nèi)部的最大值(或最小值或最小值),則一定是極則一定是極大值大值(或極小值或極小值). (4)如果函數(shù)不在閉區(qū)間如果函數(shù)不在閉區(qū)間a,b上可導(dǎo)上可導(dǎo),則在確定函數(shù)則在確定函數(shù)的最值時的最值時,不僅比較該函數(shù)各導(dǎo)數(shù)為零的點與端點處的不僅比較該函數(shù)各導(dǎo)數(shù)為零的點與端點處的值值,還要比較函數(shù)在定義域內(nèi)各不可導(dǎo)的點處的值還要比較函數(shù)在定義域內(nèi)各不可導(dǎo)的點處的值. (5)
7、在解決實際應(yīng)用問題中在解決實際應(yīng)用問題中,如果函數(shù)在區(qū)間內(nèi)只有一如果函數(shù)在區(qū)間內(nèi)只有一個極值點個極值點(這樣的函數(shù)稱為單峰函數(shù)這樣的函數(shù)稱為單峰函數(shù)),那么要根據(jù)實那么要根據(jù)實際意義判定是最大值還是最小值即可際意義判定是最大值還是最小值即可,不必再與端不必再與端點的函數(shù)值進行比較點的函數(shù)值進行比較.現(xiàn)在學(xué)習(xí)的是第六頁,共20頁延伸延伸1:設(shè)設(shè) ,函數(shù)函數(shù) 的最的最 大值為大值為1,最小值為最小值為 ,求常數(shù)求常數(shù)a,b. 132 a) 11(23)(23 xbaxxxf26 解解:令令 得得x=0或或a.033)(2 axxxf當(dāng)當(dāng)x變化時變化時, ,f(x)的變化情況如下表的變化情況如下表:
8、)(xf x-1(-1,0) 0 (0,a) a(a,1) 1f(x) +0 - 0 +f(x) -1-3a/2+b b -a3/2+b 1-3a/2+b由表知由表知,當(dāng)當(dāng)x=0時時,f(x)取得極大值取得極大值b,而而f(0)f(a),f(0)f(-1),f(1)f(-1).故需比較故需比較f(1)與與f(0)的大小的大小.f(0)-f(1)=3a/2-10,所以所以f(x)的最大值為的最大值為f(0)=b,故故b=1.現(xiàn)在學(xué)習(xí)的是第七頁,共20頁又又f(-1)-f(a)=(a+1)2(a-2)/21,0 x1,求函數(shù)求函數(shù)f(x)=xp+(1-x)p的值域的值域.說明說明:由于由于f(x)
9、在在0,1上連續(xù)可導(dǎo)上連續(xù)可導(dǎo),必有最大值與最小值必有最大值與最小值, 因此求函數(shù)因此求函數(shù)f(x)的值域的值域,可轉(zhuǎn)化為求最值可轉(zhuǎn)化為求最值.解解:.)1()1()(1111 ppppxxpxppxxf令令 ,則得則得xp-1=(1-x)p-1,即即x=1-x,x=1/2.0)( xf而而 f(0)=f(1)=1,因為因為p1,故故11/2p-1.,21)21(1 pf所以所以f(x)的最小值為的最小值為 ,最大值為最大值為1.121 p從而函數(shù)從而函數(shù)f(x)的值域為的值域為.1 ,211 p現(xiàn)在學(xué)習(xí)的是第八頁,共20頁練習(xí)練習(xí)2:求函數(shù)求函數(shù)f(x)=p2x2(1-x)p(p是正數(shù)是正數(shù)
10、)在在0,1上的最上的最 大值大值.解解:.)2(2)1()(12xpxxpxfp 令令 ,解得解得.22, 1, 00)(321pxxxxf 在在0,1上上,有有f(0)=0,f(1)=0,)2( 4)22(2 ppppf 故所求最大值是故所求最大值是.)2(42ppp 練習(xí)練習(xí)1:求函數(shù)求函數(shù)f(x)=2x3+3x2-12x+14在區(qū)間在區(qū)間-3,4上的最上的最 大值和最小值大值和最小值.答案答案:最大值為最大值為f(4)=142,最小值為最小值為f(1)=7.現(xiàn)在學(xué)習(xí)的是第九頁,共20頁四、實際應(yīng)用四、實際應(yīng)用1.實際問題中的應(yīng)用實際問題中的應(yīng)用. 在日常生活、生產(chǎn)和科研中在日常生活、生
11、產(chǎn)和科研中,常常會遇到求函數(shù)的常常會遇到求函數(shù)的最大最大(小小)值的問題值的問題.建立目標(biāo)函數(shù)建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)的方法求最然后利用導(dǎo)數(shù)的方法求最值是求解這類問題常見的解題思路值是求解這類問題常見的解題思路. 在建立目標(biāo)函數(shù)時在建立目標(biāo)函數(shù)時,一定要注意確定函數(shù)的定義域一定要注意確定函數(shù)的定義域. 在實際問題中在實際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點使點使 的情形的情形,如果函數(shù)在這個點有極大如果函數(shù)在這個點有極大(小小)值值,那么不與端點值比較那么不與端點值比較,也可以知道這就是最大也可以知道這就是最大(小小)值值.這里所說的也適用于開區(qū)間或無窮區(qū)間
12、這里所說的也適用于開區(qū)間或無窮區(qū)間.0)( xf滿足上述情況的函數(shù)我們稱之為滿足上述情況的函數(shù)我們稱之為“單峰函數(shù)單峰函數(shù)”.現(xiàn)在學(xué)習(xí)的是第十頁,共20頁例例1:在邊長為在邊長為60cm的正的正 方形鐵皮的四角切去相等方形鐵皮的四角切去相等的正方形的正方形,再把它的邊沿虛再把它的邊沿虛線折起線折起(如圖如圖),做成一個無做成一個無蓋的方底箱子蓋的方底箱子,箱底邊長為箱底邊長為多少時多少時,箱子的容積最大箱子的容積最大?最大容積是多少最大容積是多少?解解:設(shè)箱底邊長為設(shè)箱底邊長為x,則箱高則箱高h=(60-x)/2.箱子容積箱子容積 V(x)=x2h=(60 x2-x3)/2(0 x60).令令
13、 ,解得解得x=0(舍去舍去),x=40.且且V(40)=16000.02360)(2 xxxV由題意可知由題意可知,當(dāng)當(dāng)x過小過小(接近接近0)或過大或過大(接近接近60)時時,箱子的容箱子的容積很小積很小,因此因此,16000是最大值是最大值.答答:當(dāng)當(dāng)x=40cm時時,箱子容積最大箱子容積最大,最大容積是最大容積是16000cm3.現(xiàn)在學(xué)習(xí)的是第十一頁,共20頁類題類題:圓柱形金屬飲料罐的容積一定時圓柱形金屬飲料罐的容積一定時,它的高與底半徑它的高與底半徑 應(yīng)怎樣選取應(yīng)怎樣選取,才能使所用的材料最省才能使所用的材料最省?解解:設(shè)圓柱的高為設(shè)圓柱的高為h,底半徑為底半徑為r,則表面積則表面
14、積S=2rh+2r2.由由V=r2h,得得 ,則則2rVh .2222)(222rrVrrVrrS 令令 ,解得解得 ,從而從而 ,即即h=2r.042)(2 rrVrS 32 Vr 232)2( VVrVh 33224 VV 由于由于S(r)只有一個極值只有一個極值,所以它是最小值所以它是最小值.答答:當(dāng)罐的高與底半徑相等時當(dāng)罐的高與底半徑相等時,所用的材料最省所用的材料最省.現(xiàn)在學(xué)習(xí)的是第十二頁,共20頁例例2:如圖如圖,鐵路線上鐵路線上AB段長段長 100km,工廠工廠C到鐵路的到鐵路的 距離距離CA=20km.現(xiàn)在要現(xiàn)在要 在在AB上某一處上某一處D,向向C修修 一條公路一條公路.已知
15、鐵路每噸已知鐵路每噸 千米與公路每噸千米的運費之比為千米與公路每噸千米的運費之比為3:5.為了使原料為了使原料 從供應(yīng)站從供應(yīng)站B運到工廠運到工廠C的運費最省的運費最省,D應(yīng)修在何處應(yīng)修在何處?B D AC解解:設(shè)設(shè)DA=xkm,那么那么DB=(100-x)km,CD= km. 2220 x2400 x 又設(shè)鐵路上每噸千米的運費為又設(shè)鐵路上每噸千米的運費為3t元元,則公路上每噸千米的運則公路上每噸千米的運費為費為5t元元.這樣這樣,每噸原料從供應(yīng)站每噸原料從供應(yīng)站B運到工廠運到工廠C的總運費的總運費為為).1000()100(34005352 xxtxtBDtCDty現(xiàn)在學(xué)習(xí)的是第十三頁,共2
16、0頁令令 ,在在 的范圍內(nèi)有的范圍內(nèi)有唯一解唯一解x=15.0) 34005(2 xxty1000 x所以所以,當(dāng)當(dāng)x=15(km),即即D點選在距點選在距A點點15千米時千米時,總運費最總運費最省省.注注:可以進一步討論可以進一步討論,當(dāng)當(dāng)AB的距離大于的距離大于15千米時千米時,要找的要找的 最優(yōu)點總在距最優(yōu)點總在距A點點15千米的千米的D點處點處;當(dāng)當(dāng)AB之間的距離之間的距離 不超過不超過15千米時千米時,所選所選D點與點與B點重合點重合.練習(xí)練習(xí):已知圓錐的底面半徑為已知圓錐的底面半徑為R,高為高為H,求內(nèi)接于這個圓求內(nèi)接于這個圓 錐體并且體積最大的圓柱體的高錐體并且體積最大的圓柱體的
17、高h.答答:設(shè)圓柱底面半徑為設(shè)圓柱底面半徑為r,可得可得r=R(H-h)/H.易得當(dāng)易得當(dāng)h=H/3 時時, 圓柱體的體積最大圓柱體的體積最大.2.與數(shù)學(xué)中其它分支的結(jié)合與應(yīng)用與數(shù)學(xué)中其它分支的結(jié)合與應(yīng)用.現(xiàn)在學(xué)習(xí)的是第十四頁,共20頁xy例例1: 如圖如圖,在二次函數(shù)在二次函數(shù)f(x)= 4x-x2的圖象與的圖象與x軸所軸所 圍成的圖形中有一個圍成的圖形中有一個 內(nèi)接矩形內(nèi)接矩形ABCD,求這求這 個矩形的最大面積個矩形的最大面積.解解:設(shè)設(shè)B(x,0)(0 x2), 則則 A(x, 4x-x2).從而從而|AB|= 4x-x2,|BC|=2(2-x).故矩形故矩形ABCD的面積的面積為為:
18、S(x)=|AB|BC|=2x3-12x2+16x(0 x0得得x=1.0)( xf而而0 x1時時, ,所以所以x=1是是f(x)的極的極小值點小值點.0)( xf0)( xf所以當(dāng)所以當(dāng)x=1時時,f(x)取最小值取最小值f(1)=1.從而當(dāng)從而當(dāng)x0時時,f(x)1恒成立恒成立,即即: 成立成立.2)1(211ln xxx3)1(321x 現(xiàn)在學(xué)習(xí)的是第十七頁,共20頁五、小結(jié)五、小結(jié)1.求在求在a,b上連續(xù)上連續(xù),(a,b)上可導(dǎo)的函數(shù)上可導(dǎo)的函數(shù)f(x)在在a,b上的上的 最值的步驟最值的步驟: (1)求求f(x)在在(a,b)內(nèi)的極值內(nèi)的極值; (2)將將f(x)的各極值與的各極值與f(a)、f(b)比較比較,其中最大的一個其中最大的一個 是最大值是最大值,最小的一個是最小值最小的一個是最小值.2.求函數(shù)的最值時求函數(shù)的最值時,應(yīng)注意以下幾點應(yīng)注意以下幾點:(1)要正確區(qū)分極值與最值這兩個概念要正確區(qū)分極值與最值這兩個概念.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《診斷學(xué)胸部評估》課件
- 2024年黑龍江省《消防員資格證之一級防火考試》必刷500題標(biāo)準(zhǔn)卷
- 中級微觀經(jīng)濟學(xué)范里安課件ch
- 2024年高考生物必修全部和選修1基礎(chǔ)知識清單(以問題串形式呈現(xiàn))含答案
- 單位管理制度集粹匯編【人事管理】十篇
- 《盆景制作與欣賞》課件
- 單位管理制度匯編大合集【人力資源管理篇】
- 高中語文文言文閱讀部分
- 單位管理制度范例選集【職工管理】十篇
- 單位管理制度范例合集【人員管理】十篇
- 水利水電工程安全管理制度例文(三篇)
- 2025四川宜賓市南溪區(qū)屬國企業(yè)招聘融資人員6人管理單位筆試遴選500模擬題附帶答案詳解
- DB45T 2048-2019 微型消防站建設(shè)管理規(guī)范
- SCTP大云云計算PT2題庫【深信服】認證考試題庫及答案
- 外研版(2024新版)七年級上冊英語期末質(zhì)量監(jiān)測試卷 3套(含答案)
- 《測土配方施肥》課件
- 人教版2024-2025學(xué)年第一學(xué)期八年級物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 職業(yè)健康檢查管理制度
- 電梯維保管理體系手冊
- 2024年國家電網(wǎng)招聘之通信類題庫及參考答案(考試直接用)
- 第12課《詞四首》課件+2023-2024學(xué)年統(tǒng)編版語文九年級下冊
評論
0/150
提交評論