版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、肥城市第六中學(xué)校本研修評(píng)估考核材料二 0 一 五 年 十一 月目 錄課程開發(fā)與實(shí)施安排表校本課程實(shí)施綱要第一部分 數(shù)學(xué)思維的變通性(1)善于觀察(2)善于聯(lián)想(3)善于將問題進(jìn)行轉(zhuǎn)化第二部分 數(shù)學(xué)思維的反思性(1) 檢查思路是否正確,注意發(fā)現(xiàn)其中的錯(cuò)誤(2) 驗(yàn)算的訓(xùn)練(3) 獨(dú)立思考,敢于發(fā)表不同見解校本課程開發(fā)與實(shí)施安排表課程開發(fā)生活中的數(shù)學(xué)開發(fā)教師教研組數(shù)學(xué)組課程學(xué)習(xí)目標(biāo)以全面貫徹落實(shí)課改精神為宗旨,以數(shù)學(xué)思維為主線,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,全面推進(jìn)素質(zhì)教育。1、 通過教學(xué),增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;2、 通過教學(xué),讓學(xué)生了解數(shù)學(xué)源于生活、應(yīng)用于生活;3、 通過數(shù)學(xué),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決
2、問題等自主學(xué)習(xí)的能力課程內(nèi)容設(shè)計(jì)第一部分 數(shù)學(xué)思維的變通性第二部分 數(shù)學(xué)思維的反思性第三部分 數(shù)學(xué)思維的嚴(yán)密性第四部分 數(shù)學(xué)思維的開拓性可提供的總教案數(shù)教材方式適用年級(jí)高一、高二選課人數(shù)60教學(xué)設(shè)備要求多媒體所需課時(shí)6-8上課形式集體參考文獻(xiàn)考核方式考核指標(biāo)及標(biāo)準(zhǔn)出勤率日常作業(yè)考核(學(xué)分)總評(píng)0.20.10.61學(xué)科組長意見學(xué)生選報(bào)情況綜述(包括學(xué)生應(yīng)具備的基本素質(zhì))上屆學(xué)生反饋及需完善的地方校本課程指導(dǎo)小組意見數(shù)學(xué)思維校本課程綱要一、基本項(xiàng)目課程名稱:數(shù)學(xué)思維授課老師:授課對象:高一、高二年級(jí)部分學(xué)生教學(xué)材料:相關(guān)網(wǎng)站、資料二、課程目標(biāo)以全面貫徹落實(shí)課改精神為宗旨,以數(shù)學(xué)思維為主線,提高學(xué)生
3、學(xué)習(xí)數(shù)學(xué)的興趣,全面推進(jìn)素質(zhì)教育。1、通過教學(xué),增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;2、通過教學(xué),讓學(xué)生了解數(shù)學(xué)源于生活、應(yīng)用于生活;3、通過數(shù)學(xué),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題等自主學(xué)習(xí)的能力課程內(nèi)容:第一部分 數(shù)學(xué)思維的變通性第二部分 數(shù)學(xué)思維的反思性第三部分 數(shù)學(xué)思維的嚴(yán)密性第四部分 數(shù)學(xué)思維的開拓性四、課程實(shí)施建議基礎(chǔ)知識(shí)教學(xué)、實(shí)物演示、電教配合、圖上作業(yè)、小組研討、模擬訓(xùn)練、考查等。五、課程評(píng)價(jià)評(píng)價(jià)指標(biāo)(一):學(xué)生自評(píng)與互評(píng)相結(jié)合,即上課出勤情況、課堂紀(jì)律情況、參與練習(xí)情況、團(tuán)結(jié)協(xié)作情況;評(píng)價(jià)指標(biāo)(二):平時(shí)模擬訓(xùn)練與考查相結(jié)合;評(píng)價(jià)指標(biāo)(三):教師綜合評(píng)定給與相應(yīng)等級(jí);評(píng)價(jià)等級(jí)均為:優(yōu)秀、良好、中
4、等、須努力四檔第一講 數(shù)學(xué)思維的變通性一、概念數(shù)學(xué)問題千變?nèi)f化,要想既快又準(zhǔn)的解題,總用一套固定的方案是行不通的,必須具有思維的變通性善于根據(jù)題設(shè)的相關(guān)知識(shí),提出靈活的設(shè)想和解題方案。根據(jù)數(shù)學(xué)思維變通性的主要體現(xiàn),本講將著重進(jìn)行以下幾個(gè)方面的訓(xùn)練:(1)善于觀察(2)善于聯(lián)想(3)善于將問題進(jìn)行轉(zhuǎn)化(1)觀察能力的訓(xùn)練任何一道數(shù)學(xué)題,都包含一定的數(shù)學(xué)條件和關(guān)系。要想解決它,就必須依據(jù)題目的具體特征,對題目進(jìn)行深入的、細(xì)致的、透徹的觀察,然后認(rèn)真思考,透過表面現(xiàn)象看其本質(zhì),這樣才能確定解題思路,找到解題方法。雖然觀察看起來是一種表面現(xiàn)象,但它是認(rèn)識(shí)事物內(nèi)部規(guī)律的基礎(chǔ)。所以,必須重視觀察能力的訓(xùn)練
5、,使學(xué)生不但能用常規(guī)方法解題,而且能根據(jù)題目的具體特征,采用特殊方法來解題。例1 已知都是實(shí)數(shù),求證 思路分析 從題目的外表形式觀察到,要證的結(jié)論的右端與平面上兩點(diǎn)間的距離公式很相似,而xyO圖121左端可看作是點(diǎn)到原點(diǎn)的距離公式。根據(jù)其特點(diǎn),可采用下面巧妙而簡捷的證法,這正是思維變通的體現(xiàn)。證明 不妨設(shè)如圖121所示,則 在中,由三角形三邊之間的關(guān)系知: 當(dāng)且僅當(dāng)O在AB上時(shí),等號(hào)成立。 因此, 例2 已知,試求的最大值。解 由 得又當(dāng)時(shí),有最大值,最大值為思路分析 要求的最大值,由已知條件很快將變?yōu)橐辉魏瘮?shù)然后求極值點(diǎn)的值,聯(lián)系到,這一條件,既快又準(zhǔn)地求出最大值。上述解法觀察到了隱蔽條
6、件,體現(xiàn)了思維的變通性。例3 已知二次函數(shù)滿足關(guān)系,試比較與的大小。xyO2圖122思路分析 由已知條件可知,在與左右等距離的點(diǎn)的函數(shù)值相等,說明該函數(shù)的圖像關(guān)于直線對稱,又由已知條件知它的開口向上,所以,可根據(jù)該函數(shù)的大致圖像簡捷地解出此題。解 (如圖122)由,知是以直線為對稱軸,開口向上的拋物線它與距離越近的點(diǎn),函數(shù)值越小。(2)聯(lián)想能力的訓(xùn)練聯(lián)想是問題轉(zhuǎn)化的橋梁。稍具難度的問題和基礎(chǔ)知識(shí)的聯(lián)系,都是不明顯的、間接的、復(fù)雜的。因此,解題的方法怎樣、速度如何,取決于能否由觀察到的特征,靈活運(yùn)用有關(guān)知識(shí),做出相應(yīng)的聯(lián)想,將問題打開缺口,不斷深入。例如,解方程組.這個(gè)方程指明兩個(gè)數(shù)的和為,這兩
7、個(gè)數(shù)的積為。由此聯(lián)想到韋達(dá)定理,、是一元二次方程 的兩個(gè)根,所以或.可見,聯(lián)想可使問題變得簡單。例4 在中,若為鈍角,則的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能確定思路分析 此題是在中確定三角函數(shù)的值。因此,聯(lián)想到三角函數(shù)正切的兩角和公式可得下面解法。解 為鈍角,.在中且故應(yīng)選擇(B)例5 若思路分析 此題一般是通過因式分解來證。但是,如果注意觀察已知條件的特點(diǎn),不難發(fā)現(xiàn)它與一元二次方程的判別式相似。于是,我們聯(lián)想到借助一元二次方程的知識(shí)來證題。證明 當(dāng)時(shí),等式 可看作是關(guān)于的一元二次方程有等根的條件,在進(jìn)一步觀察這個(gè)方程,它的兩個(gè)相等實(shí)根是1 ,根據(jù)韋達(dá)定理就有: 即
8、若,由已知條件易得 即,顯然也有.例6 已知均為正實(shí)數(shù),滿足關(guān)系式,又為不小于的自然數(shù),求證:思路分析 由條件聯(lián)想到勾股定理,可構(gòu)成直角三角形的三邊,進(jìn)一步聯(lián)想到三角函數(shù)的定義可得如下證法。證明 設(shè)所對的角分別為、則是直角,為銳角,于是 且當(dāng)時(shí),有于是有即 從而就有 (3)問題轉(zhuǎn)化的訓(xùn)練數(shù)學(xué)家G . 波利亞在怎樣解題中說過:數(shù)學(xué)解題是命題的連續(xù)變換??梢?,解題過程是通過問題的轉(zhuǎn)化才能完成的。轉(zhuǎn)化是解數(shù)學(xué)題的一種十分重要的思維方法。那么怎樣轉(zhuǎn)化呢?概括地講,就是把復(fù)雜問題轉(zhuǎn)化成簡單問題,把抽象問題轉(zhuǎn)化成具體問題,把未知問題轉(zhuǎn)化成已知問題。在解題時(shí),觀察具體特征,聯(lián)想有關(guān)問題之后,就要尋求轉(zhuǎn)化關(guān)系
9、。例如,已知,求證、三數(shù)中必有兩個(gè)互為相反數(shù)。恰當(dāng)?shù)霓D(zhuǎn)化使問題變得熟悉、簡單。要證的結(jié)論,可以轉(zhuǎn)化為:思維變通性的對立面是思維的保守性,即思維定勢。思維定勢是指一個(gè)人用同一種思維方法解決若干問題以后,往往會(huì)用同樣的思維方法解決以后的問題。它表現(xiàn)就是記類型、記方法、套公式,使思維受到限制,它是提高思維變通性的極大的障礙,必須加以克服。綜上所述,善于觀察、善于聯(lián)想、善于進(jìn)行問題轉(zhuǎn)化,是數(shù)學(xué)思維變通性的具體體現(xiàn)。要想提高思維變通性,必須作相應(yīng)的思維訓(xùn)練。 轉(zhuǎn)化成容易解決的明顯題目 例11 已知求證、中至少有一個(gè)等于1。思路分析 結(jié)論沒有用數(shù)學(xué)式子表示,很難直接證明。首先將結(jié)論用數(shù)學(xué)式子表示,轉(zhuǎn)化成我
10、們熟悉的形式。、中至少有一個(gè)為1,也就是說中至少有一個(gè)為零,這樣,問題就容易解決了。證明 于是 中至少有一個(gè)為零,即、中至少有一個(gè)為1。思維障礙 很多學(xué)生只在已知條件上下功夫,左變右變,還是不知如何證明三者中至少有一個(gè)為1,其原因是不能把要證的結(jié)論“翻譯”成數(shù)學(xué)式子,把陌生問題變?yōu)槭煜栴}。因此,多練習(xí)這種“翻譯”,是提高轉(zhuǎn)化能力的一種有效手段。例12 直線的方程為,其中;橢圓的中心為,焦點(diǎn)在軸上,長半軸為2,短半軸為1,它的一個(gè)頂點(diǎn)為,問在什么范圍內(nèi)取值時(shí),橢圓上有四個(gè)不同的點(diǎn),它們中的每一點(diǎn)到點(diǎn)的距離等于該點(diǎn)到直線的距離。思路分析 從題目的要求及解析幾何的知識(shí)可知,四個(gè)不同的點(diǎn)應(yīng)在拋物線
11、(1)是,又從已知條件可得橢圓的方程為 (2)因此,問題轉(zhuǎn)化為當(dāng)方程組(1)、(2)有四個(gè)不同的實(shí)數(shù)解時(shí),求的取值范圍。將(2)代入(1)得: (3)確定的范圍,實(shí)際上就是求(3)有兩個(gè)不等正根的充要條件,解不等式組: 在的條件下,得本題在解題過程中,不斷地把問題化歸為標(biāo)準(zhǔn)問題:解方程組和不等式組的問題。 逆向思維的訓(xùn)練逆向思維不是按習(xí)慣思維方向進(jìn)行思考,而是從其反方向進(jìn)行思考的一種思維方式。當(dāng)問題的正面考慮有阻礙時(shí),應(yīng)考慮問題的反面,從反面入手,使問題得到解決。例13 已知函數(shù),求證、中至少有一個(gè)不小于1.思路分析 反證法被譽(yù)為“數(shù)學(xué)家最精良的武器之一”,它也是中學(xué)數(shù)學(xué)常用的解題方法。當(dāng)要證
12、結(jié)論中有“至少”等字樣,或以否定形式給出時(shí),一般可考慮采用反證法。證明 (反證法)假設(shè)原命題不成立,即、都小于1。則 得 ,與矛盾,所以假設(shè)不成立,即、中至少有一個(gè)不小于1。 一題多解訓(xùn)練 由于每個(gè)學(xué)生在觀察時(shí)抓住問題的特點(diǎn)不同、運(yùn)用的知識(shí)不同,因而,同一問題可能得到幾種不同的解法,這就是“一題多解”。通過一題多解訓(xùn)練,可使學(xué)生認(rèn)真觀察、多方聯(lián)想、恰當(dāng)轉(zhuǎn)化,提高數(shù)學(xué)思維的變通性。例14 已知復(fù)數(shù)的模為2,求的最大值。解法一(代數(shù)法)設(shè)解法二(三角法)設(shè)yxOi-2i圖123Z則 解法三(幾何法)如圖123 所示,可知當(dāng)時(shí),解法四(運(yùn)用模的性質(zhì))而當(dāng)時(shí),解法五(運(yùn)用模的性質(zhì)) 又第二講 數(shù)學(xué)思維
13、的反思性一、概述數(shù)學(xué)思維的反思性表現(xiàn)在思維活動(dòng)中善于提出獨(dú)立見解,精細(xì)地檢查思維過程,不盲從、不輕信。在解決問題時(shí)能不斷地驗(yàn)證所擬定的假設(shè),獲得獨(dú)特的解決問題的方法,它和創(chuàng)造性思維存在著高度相關(guān)。本講重點(diǎn)加強(qiáng)學(xué)生思維的嚴(yán)密性的訓(xùn)練,培養(yǎng)他們的創(chuàng)造性思維。二、思維訓(xùn)練實(shí)例(1) 檢查思路是否正確,注意發(fā)現(xiàn)其中的錯(cuò)誤。 例1 已知,若求的范圍。錯(cuò)誤解法 由條件得 ×2得 ×2得 則 +得 錯(cuò)誤分析 采用這種解法,忽視了這樣一個(gè)事實(shí):作為滿足條件的函數(shù),其值是同時(shí)受制約的。當(dāng)取最大(小)值時(shí),不一定取最大(?。┲?,因而整個(gè)解題思路是錯(cuò)誤的。正確解法 由題意有解得:把和的范圍代入得
14、 在本題中能夠檢查出解題思路錯(cuò)誤,并給出正確解法,就體現(xiàn)了思維具有反思性。只有牢固地掌握基礎(chǔ)知識(shí),才能反思性地看問題。例2 證明勾股定理:已知在中,求證錯(cuò)誤證法 在中,而,即錯(cuò)誤分析 在現(xiàn)行的中學(xué)體系中,這個(gè)公式本身是從勾股定理推出來的。這種利用所要證明的結(jié)論,作為推理的前提條件,叫循環(huán)論證。循環(huán)論證的錯(cuò)誤是在不知不覺中產(chǎn)生的,而且不易發(fā)覺。因此,在學(xué)習(xí)中對所學(xué)的每個(gè)公式、法則、定理,既要熟悉它們的內(nèi)容,又要熟悉它們的證明方法和所依據(jù)的論據(jù)。這樣才能避免循環(huán)論證的錯(cuò)誤。發(fā)現(xiàn)本題犯了循環(huán)論證的錯(cuò)誤,正是思維具有反思性的體現(xiàn)。(2) 驗(yàn)算的訓(xùn)練驗(yàn)算是解題后對結(jié)果進(jìn)行檢驗(yàn)的過程。通過驗(yàn)算,可以檢查解
15、題過程的正確性,增強(qiáng)思維的反思性。例3 已知數(shù)列的前項(xiàng)和,求錯(cuò)誤解法 錯(cuò)誤分析 顯然,當(dāng)時(shí),錯(cuò)誤原因,沒有注意公式成立的條件是因此在運(yùn)用時(shí),必須檢驗(yàn)時(shí)的情形。即:例4 實(shí)數(shù)為何值時(shí),圓與拋物線有兩個(gè)公共點(diǎn)。錯(cuò)誤解法 將圓與拋物線 聯(lián)立,消去,得 因?yàn)橛袃蓚€(gè)公共點(diǎn),所以方程有兩個(gè)相等正根,得 解之,得錯(cuò)誤分析 (如圖221;222)顯然,當(dāng)時(shí),圓與拋物線有兩個(gè)公共點(diǎn)。xyO圖222xyO圖221要使圓與拋物線有兩個(gè)交點(diǎn)的充要條件是方程有一正根、一負(fù)根;或有兩個(gè)相等正根。當(dāng)方程有一正根、一負(fù)根時(shí),得解之,得因此,當(dāng)或時(shí),圓與拋物線有兩個(gè)公共點(diǎn)。思考題:實(shí)數(shù)為何值時(shí),圓與拋物線,(1) 有一個(gè)公共點(diǎn);(2) 有三個(gè)公共點(diǎn);(3) 有四個(gè)公共點(diǎn);(4) 沒有公共點(diǎn)。養(yǎng)成驗(yàn)算的習(xí)慣,可以有效地增強(qiáng)思維反思性。如:在解無理方程、無理不等式;對數(shù)方程、對數(shù)不等式時(shí),由于變形后方程或不等式兩端代數(shù)式的定義域可能會(huì)發(fā)生變化,這樣就有可能產(chǎn)生增根或失根,因此必須進(jìn)行檢驗(yàn),舍棄增根,找回失根。(3) 獨(dú)立思考,敢于發(fā)表不同見解受思維定勢或別人提示的影響,解題時(shí)盲目附和,不能提出自己的看法,這不利于增強(qiáng)思維的反思性。因此,在解決問題時(shí),應(yīng)積極地獨(dú)立思考,敢于對題目解法發(fā)表自己的見解,這樣才能增強(qiáng)思維的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學(xué)《基礎(chǔ)西班牙語(II)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東水利電力職業(yè)技術(shù)學(xué)院《雕塑造型與表現(xiàn)技法》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東石油化工學(xué)院《建筑電氣識(shí)圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東汕頭幼兒師范高等專科學(xué)?!稛o機(jī)化學(xué)1》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東培正學(xué)院《音樂鑒賞與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東嶺南職業(yè)技術(shù)學(xué)院《第二外國語三》2023-2024學(xué)年第一學(xué)期期末試卷
- 大學(xué)迎新活動(dòng)總結(jié)
- 2024小單元建筑幕墻構(gòu)件
- 【全程復(fù)習(xí)方略】2020-2021學(xué)年北師大版高中數(shù)學(xué)必修一課時(shí)作業(yè)(二十七)-4.2
- 【名師一號(hào)】2020-2021學(xué)年高中英語人教版必修4-雙基限時(shí)練3
- 中科院2022年物理化學(xué)(甲)考研真題(含答案)
- 廣東省汕尾市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測化學(xué)試卷(含答案解析)
- 《熱電阻溫度傳感器》課件
- 抖音酒店直播可行性方案
- 信訪業(yè)務(wù)培訓(xùn)班課件
- 物資清運(yùn)方案及
- 熱穩(wěn)定校驗(yàn)計(jì)算書
- 北京市房山區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 婦產(chǎn)科課件-子宮內(nèi)膜息肉臨床診療路徑(2022版)解讀
- 人教版六年級(jí)數(shù)學(xué)上冊典型例題系列之第三單元分?jǐn)?shù)除法應(yīng)用題部分拓展篇(原卷版)
- 課本含注音的注釋匯總 統(tǒng)編版語文八年級(jí)上冊
評(píng)論
0/150
提交評(píng)論