變量間的相關(guān)關(guān)系_第1頁
變量間的相關(guān)關(guān)系_第2頁
變量間的相關(guān)關(guān)系_第3頁
變量間的相關(guān)關(guān)系_第4頁
變量間的相關(guān)關(guān)系_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、關(guān)于變量間的相關(guān)關(guān)系現(xiàn)在學習的是第一頁,共22頁 兩個變量間存在著某種關(guān)系,帶有不確定性(隨機性),不能用函數(shù)關(guān)系精確地表達出來,我們說這兩個變量具有相關(guān)關(guān)系.變量間的相關(guān)關(guān)系現(xiàn)在學習的是第二頁,共22頁 問題1、對于兩個變量之間的關(guān)系,我們之前學過,函數(shù)關(guān)系是一種確定性關(guān)系。那么下列變量與變量之間哪些是函數(shù)關(guān)系,哪些是相關(guān)關(guān)系?正方形邊長與面積之間的關(guān)系圓的半徑與圓的周長之間的關(guān)系年齡與人體的脂肪含量之間的關(guān)系數(shù)學成績與物理成績之間的關(guān)系.相關(guān)關(guān)系初步探索,直觀感知探究一: 兩個變量間的相關(guān)關(guān)系 請同學們試舉幾個現(xiàn)實生活中相關(guān)關(guān)系的例子?,F(xiàn)在學習的是第三頁,共22頁問題2、在一次對人體脂肪含

2、量和年齡的關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):年齡23273941454950脂肪9.517.821.225.927.5 26.3 28.2年齡53545657586061脂肪29.630.231.430.833.5 35.2 34.6 根據(jù)上述數(shù)據(jù),人體的脂肪含量與年齡之間有怎樣的關(guān)系?探究二:散點圖初步探索,直觀感知如何進行數(shù)據(jù)分析?現(xiàn)在學習的是第四頁,共22頁現(xiàn)在學習的是第五頁,共22頁種植西紅柿,施肥量與產(chǎn)量 之間的散點圖 問題3 下面兩個散點圖中點的分布有什么不同?初步探索,直觀感知年齡與脂肪含量之間的散點圖現(xiàn)在學習的是第六頁,共22頁 觀察左面散點圖,發(fā)現(xiàn)這些點大致分布在一條

3、直線附 近。 像這樣,如果散點圖中點的分布從整體上看大致在一條_附近,我們就稱這兩個變量之間具有線性相 關(guān)關(guān)系, 這條直線叫做_。回歸直線直線現(xiàn)在學習的是第七頁,共22頁散點圖3).如果所有的樣本點都落在某一直線附近,變量之間就有線性相關(guān)關(guān)系 .1).如果所有的樣本點都落在某一函數(shù)曲線上,就用該函數(shù)來描述變量之間的關(guān)系,即變量之間具有函數(shù)關(guān)系2).如果所有的樣本點落在某一函數(shù)曲線附近,變量之間就有相關(guān)關(guān)系。說明散點圖:用來判斷兩個變量是否具有相關(guān)關(guān)系.現(xiàn)在學習的是第八頁,共22頁C判斷下列圖形中具有線性相關(guān)關(guān)系的兩個變量是現(xiàn)在學習的是第九頁,共22頁 問題4 (1)兩個散點圖的有什么共同之處?

4、探究三:線性相關(guān)、正相關(guān)、負相關(guān)(2)兩個散點圖的點的分布有什么不同?初步探索,直觀感知現(xiàn)在學習的是第十頁,共22頁探究三:線性相關(guān)、正相關(guān)、負相關(guān)初步探索,直觀感知現(xiàn)在學習的是第十一頁,共22頁 左面的散點圖中,點散布在從左下角到右上角的區(qū)域,對于兩個變量的這種相關(guān)關(guān)系,我們將它稱為正相關(guān)。 右面的散點圖中,點散布在從左上角到右下角的區(qū)域,對于兩個變量的這種相關(guān)關(guān)系,我們將它稱為負相關(guān)。初步探索,直觀感知現(xiàn)在學習的是第十二頁,共22頁回歸直線 現(xiàn)在學習的是第十三頁,共22頁整體上最接近 如何具體的求出這個回歸直線方程呢?現(xiàn)在學習的是第十四頁,共22頁回歸直線 實際上,求回歸直線的關(guān)鍵是如何用

5、數(shù)學的方法來刻畫“從整體上看,各點與此直線的距離最小”.現(xiàn)在學習的是第十五頁,共22頁 問題歸結(jié)為:a,b取什么值時Q最小,即總體和最小.Q = (y1-bx1-a)2 + (y2-bx2-a)2 + (yn-bxn-a)2這一方法叫最小二乘法 現(xiàn)在學習的是第十六頁,共22頁計算回歸方程的斜率與截距的一般公式計算回歸方程的斜率與截距的一般公式:1122211()()()nniiiiiinniiiixxyyx ynx ybxxxnxaybx現(xiàn)在學習的是第十七頁,共22頁 利用公式可求得年齡和人體脂肪含量的樣本數(shù)據(jù)的回歸方程為 由此我們可以根據(jù)一個人的年齡預測其體內(nèi)脂肪含量的百分比的估計值.若某人

6、65歲,則其體內(nèi)脂肪含量的百分比約為多少?0. 5770. 448yx=-0.57765-0.448= 37.1現(xiàn)在學習的是第十八頁,共22頁小結(jié)1.求樣本數(shù)據(jù)的線性回歸方程,可按下列步驟進行:第一步,計算平均數(shù) , xy1niiix y21niix第二步,求和 ,1221,ni iiniixynx ybay bxxnx 第三步,計算 第四步,寫出回歸方程 現(xiàn)在學習的是第十九頁,共22頁2.回歸直線經(jīng)過樣本點中心, )x y(高斯的假定:(平均數(shù)天然合理)現(xiàn)在學習的是第二十頁,共22頁例.(廣東高考)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x噸與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).x3456y2.5344.5(1)請畫出上表數(shù)據(jù)的散點圖.(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程.(3)由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論