4 第四章 習習題 參考答案_第1頁
4 第四章 習習題 參考答案_第2頁
4 第四章 習習題 參考答案_第3頁
4 第四章 習習題 參考答案_第4頁
4 第四章 習習題 參考答案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、第四章習題參考答案 P 1357. 1)用OLS法建立居民人均消費支出與可支配收入的線性模型。create u 20; data consump income;ls consump c incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMER-squared Mean dependent varAdjusted R-squared . dependent var.

2、 of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)線性模型如下: CONSUMP = 5389 + *INCOME2)檢驗模型是否存在異方差性 i) 圖:是否有明顯的散點擴大/縮小/復雜型趨勢 scat income consumpii)解釋變量殘差圖:是否形成一條斜率為0的直線 scat income resid2 或者 genr ei2=resid2; scat income

3、ei2由兩個圖形,均可判定存在遞增型異方差。 還可以用帕克檢驗,戈里瑟檢驗,戈德菲爾德-匡特檢驗,懷特檢驗等方法。iii) 戈德菲爾德-匡特檢驗:共有20個樣本,去掉中間1/4個樣本(4個),剩余大樣本、小樣本各8個。Sort income; smpl 1 8; ls consump C incomeSmpl 13 20; ls consump C income,存在異方差。iV)懷特檢驗:因為只有一個變量,故是否含有交叉項是一樣的。 Viewresidual testwhite heteroskedastcity(cross terms / no cross terms )White Het

4、eroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityDependent Variable: RESID2Method: Least SquaresSample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOMEINCOME2R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike in

5、fo criterionSum squared resid+10 Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic),存在異方差。還可以通過概率判定存在異方差。3)若存在異方差,用適當?shù)姆椒ü烙嬆P蛯?shù)(加權最小二乘法)ls consump C income; genr eijdz=abs(resid)ls(w=1/eijdz) consump C incomeDependent Variable: CONSUMPMethod: Least SquaresSample: 1 20Incl

6、uded observations: 20Weighting series: 1/EIJDZVariableCoefficientStd. Errort-StatisticProb. CINCOMEWeighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Pro

7、b(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Sum squared residDurbin-Watson statWhite Heteroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: STD_RESID2Method: Least SquaresSample: 1

8、 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb. CINCOME或,均可判定加權處理后的模型不存在異方差。模型經(jīng)取對數(shù)或加權處理都可以一定程度地消除異方差性。ls log(consump) C log(income); genr eijdz=abs(resid);ls(w=1/eijdz) log(Consump) C log(Income)普通最小二乘模型CONSUMP = 5389 + *INCOME加權最小二乘模型 CONSUMP = + *INCOME對數(shù)模型:LOG(CONSUMP)=+

9、*LOG(INCOME)加權對數(shù)模型:LOG(CONSUMP)=+ *LOG(INCOME)對各種模型的White檢驗結果,綜合如下模型不取對數(shù)F-statisticProbabilityObs*R-squaredProbability模型取對數(shù)F-statisticProbabilityObs*R-squaredProbability模型不取對數(shù),但加權F-statisticProbabilityObs*R-squaredProbability模型取對數(shù),且加權F-statisticProbabilityObs*R-squaredProbability可見,各種方法都可以起到抑制異方差的效果

10、。8. 1)若采用對數(shù)模型,是否存在序列相關性ls log(industry) C log(invest)Dependent Variable: LOG(INDUSTRY)Method: Least SquaresSample: 1901 1921Included observations: 21VariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info cri

11、terionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)LOG(INDUSTRY) = 1. + *LOG(INVEST)i) 散點圖ii) 隨t變化的散點圖 由兩個圖形,均可判定存在正序列相關。還可以利用回歸檢驗法,D -W檢驗,拉格朗日乘數(shù)檢驗等方法。iii) D -W檢驗(DL(21, =, DU(21, =.= < DL(21, 2,=,至少存在一階正自相關;但.只適用判別一階自相關。iv) 拉格朗日乘數(shù)檢驗Breusch-Godf

12、rey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityVariableCoefficientStd. Errort-StatisticProb. CLOG(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent varLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)一階LM Test:LM TestRESID(-1)的t統(tǒng)計

13、量顯著(P=<),至少存在一階自相關。2)按照一階自相關,用杜賓兩步法和廣義最小二乘法估計原模型。杜賓兩步法:ls y c y(-1) x x(-1)y(-1)前面的系數(shù):,代回差分模型,再次進行OLS估計得到原模型的參數(shù)估計量,即 。genr y = log(industry); genr x = log(invest);Step 1: ls y c y(-1) x x(-1)Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjus

14、ting endpointsVariableCoefficientStd. Errort-StatisticProb. CY(-1)XX(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Step 2: ls y - * y(-1) c x - * x

15、(-1)Dependent Variable: *Y(-1)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C*X(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid S

16、chwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic).= 介于 DL(21-1, 2,=與DU(21-1, 2,=之間,不能判別是否存在一階正自相關,但可由拉格朗日乘數(shù)法判斷,此時不存在序列相關性。Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least Squar

17、esVariableCoefficientStd. Errort-StatisticProb. C*X(-1)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)拉格朗日乘數(shù)檢驗:D-W stat: > ,不存在序列相關性。所以 矯正后

18、的模型:LOG(INDUSTRY) = + *LOG(INVEST)原模型:LOG(INDUSTRY) = 1. + *LOG(INVEST)廣義差分法ls y c x ar(1) (不能判定是否存在一階自相關)Dependent Variable: YMethod: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsConvergence achieved after 15 iterationsVariableCoefficientStd. Errort-Sta

19、tisticProb. CXAR(1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)但由LM檢驗:概率為>,故此時不存在序列相關性。因此模型只存在一階自相關性。Breusch-Godfrey Serial Correlation LM Test:F

20、-statisticProbabilityObs*R-squared ProbabilityDependent Variable: RESIDVariableCoefficientStd. Errort-StatisticProb. CXAR(1)RESID(-1)Durbin-Watson stat Prob(F-statistic)模型為 Y = + *X + * AR(1) 與杜賓兩步法矯正的模型:LOG(INDUSTRY) = + *LOG(INVEST) 非常接近。廣義最小二乘法若僅存在一階自相關ls log(industry) C log(invest) genr resid_co

21、rr = residls resid_corr resid_corr(-1) 注:resid是內(nèi)置變量;Dependent Variable: RESID_CORRMethod: Least SquaresVariableCoefficientStd. Errort-StatisticProb. CRESID_CORR(-1)R-squared Mean dependent varDurbin-Watson stat Prob(F-statistic)直接計算 模型為LOG(INDUSTRY)=+*LOG(INVEST),誤差偏大。3)采用差分形式,估計原模型。ls D(industry) C

22、 D(invest)ls industryindustry(-1) C investinvest(-1)Dependent Variable: D(INDUSTRY)Method: Least SquaresSample(adjusted): 1981 2000Included observations: 20 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. CD(INVEST)R-squared Mean dependent varAdjusted R-squared . dependent var

23、. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)Breusch-Godfrey Serial Correlation LM Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESIDMethod: Least SquaresVariableCoeffic

24、ientStd. Errort-StatisticProb. CD(INVEST)RESID(-1)R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)原模型存在一階正自相關,但經(jīng)過一階自相關差分處理后不存在序列相關性(.= > 或=>)。模型為:

25、D(INDUSTRY) = + *D(INVEST)說明:在有的方法不能判別自相關性時,可以用其他方法測試。9. 說明下述回歸模型是否可靠Ls CONSUMP C INCOME WEALTHDependent Variable: CONSUMPMethod: Least SquaresSample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb. CINCOMEWEALTHR-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schw

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論