![應(yīng)用回歸分析第4章課后習(xí)題參考答案電子教案_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/26/312e7fbe-185a-45c5-ad58-329c1c5d8d56/312e7fbe-185a-45c5-ad58-329c1c5d8d561.gif)
![應(yīng)用回歸分析第4章課后習(xí)題參考答案電子教案_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/26/312e7fbe-185a-45c5-ad58-329c1c5d8d56/312e7fbe-185a-45c5-ad58-329c1c5d8d562.gif)
![應(yīng)用回歸分析第4章課后習(xí)題參考答案電子教案_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/26/312e7fbe-185a-45c5-ad58-329c1c5d8d56/312e7fbe-185a-45c5-ad58-329c1c5d8d563.gif)
![應(yīng)用回歸分析第4章課后習(xí)題參考答案電子教案_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/26/312e7fbe-185a-45c5-ad58-329c1c5d8d56/312e7fbe-185a-45c5-ad58-329c1c5d8d564.gif)
![應(yīng)用回歸分析第4章課后習(xí)題參考答案電子教案_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/26/312e7fbe-185a-45c5-ad58-329c1c5d8d56/312e7fbe-185a-45c5-ad58-329c1c5d8d565.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、學(xué)習(xí)-好資料第4章違背基本假設(shè)的情況思考與練習(xí)參考答案4.1 試舉例說明產(chǎn)生異方差的原因。答:例4.1:截面資料下研究居民家庭的儲(chǔ)蓄行為Yj=00+。洛+ei其中:Yi表示第i個(gè)家庭的儲(chǔ)蓄額,Xi表示第i個(gè)家庭的可支配收入。由于高收入家庭儲(chǔ)蓄額的差異較大,低收入家庭的儲(chǔ)蓄額則更有規(guī)律性,差異較小,所以ei的方差呈現(xiàn)單調(diào)遞增型變化。例4.2:以某一行業(yè)的企業(yè)為樣本建立企業(yè)生產(chǎn)函數(shù)模型¥=A1K2L3eei被解釋變量:產(chǎn)出量Y,解釋變量:資本K、勞動(dòng)L、技術(shù)A,那么每個(gè)企業(yè)所處的外部環(huán)境對(duì)產(chǎn)出量的影響被包含在隨機(jī)誤差項(xiàng)中。由于每個(gè)企業(yè)所處的外部環(huán)境對(duì)產(chǎn)出量的影響程度不同,造成了隨機(jī)誤差項(xiàng)
2、的異方差性。這時(shí),隨機(jī)誤差項(xiàng)e的方差并不隨某一個(gè)解釋變量觀測(cè)值的變化而呈規(guī)律性變化,呈現(xiàn)復(fù)雜型。4.2 異方差帶來的后果有哪些?答:回歸模型一旦出現(xiàn)異方差性,如果仍采用OLS估計(jì)模型參數(shù),會(huì)產(chǎn)生下列不良后果:1、參數(shù)估計(jì)量非有效2、變量的顯著性檢驗(yàn)失去意義3、回歸方程的應(yīng)用效果極不理想總的來說,當(dāng)模型出現(xiàn)異方差性時(shí),參數(shù)OLS估計(jì)值的變異程度增大,從而造成對(duì)Y的預(yù)測(cè)誤差變大,降低預(yù)測(cè)精度,預(yù)測(cè)功能失效。4.3 簡述用加權(quán)最小二乘法消除一元線性回歸中異方差性的思想與方法。答:普通最小二乘估計(jì)就是尋找參數(shù)的估計(jì)值使離差平方和達(dá)極小。其中每個(gè)平方項(xiàng)的權(quán)數(shù)相同,是普通最小二乘回歸參數(shù)估計(jì)方法。在誤差項(xiàng)
3、等方差不相關(guān)的條件下,普通最小二乘估計(jì)是回歸參數(shù)的最小方差線性無偏估計(jì)。然而在異方差更多精品文檔學(xué)習(xí)-好資料的條件下,平方和中的每一項(xiàng)的地位是不相同的,誤差項(xiàng)的方差大的項(xiàng),在殘差平方和中的取值就偏大,作用就大,因而普通最小二乘估計(jì)的回歸線就被拉向方差大的項(xiàng),方差大的項(xiàng)的擬合程度就好,而方差小的項(xiàng)的擬合程度就差。由OLS求出的仍然是的無偏估計(jì),但不再是最小方差線性無偏估計(jì)。所以就是:對(duì)較大的殘差平方賦予較小的權(quán)數(shù),對(duì)較小的殘差平方賦予較大的權(quán)數(shù)。這樣對(duì)殘差所提供信息的重要程度作一番校正,以提高參數(shù)估計(jì)的精度。加權(quán)最小二乘法的方法:Qw八wi(yi-?i)2八wi(yi-?0-”Xi)'、
4、Wi(Xi-xw)(%-yw)1w工(XrXw)2i=10wyw- ?wxw更多精品文檔21表示1wi2CTkxi2xi2或:i2 : kxim,wi1mxi4.4 簡述用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與方法。答:運(yùn)用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與一元線性回歸的類似。多元線性回歸加權(quán)最小二乘法是在平方和中加入一個(gè)適當(dāng)?shù)臋?quán)數(shù)wi,以調(diào)整各項(xiàng)在平方和中的作用,加權(quán)最小二乘的離差平方和為:nQw(B0,M,,n)=2wi(yi-Mxii-PpXip)2(2)i1加權(quán)最小二乘估計(jì)就是尋找參數(shù)黨,3,,Pp的估計(jì)值w,%,Fpw使式(2)的離差平方和Qw達(dá)極小。所得加權(quán)
5、最小二乘經(jīng)驗(yàn)回歸方程記做?w=Kw+l?iwXi+FpwXp(3)多元回歸模型加權(quán)最小二乘法的方法:首先找到權(quán)數(shù)Wi,理論上最優(yōu)的權(quán)數(shù)Wi為誤差項(xiàng)方差52的倒數(shù),即1,、Wi=1(4)二i誤差項(xiàng)方差大的項(xiàng)接受小的權(quán)數(shù),以降低其在式(2)平方和中的作用;誤差項(xiàng)方差小的項(xiàng)接受大的權(quán)數(shù),以提高其在平方和中的作用。由(2)式求出的加權(quán)最小二乘估計(jì)因w,Kw,,!?pw就是參數(shù)P0,Pi,,Pp的最小方差線性無偏估計(jì)。一個(gè)需要解決的問題是誤差項(xiàng)的方差。2是未知的,因此無法真正按照式(4)選取權(quán)數(shù)。在實(shí)際問題中誤差項(xiàng)方差52通常與自變量的水平有關(guān)(如誤差項(xiàng)方差仃2隨著自變量的增大而增大),可以利用這種關(guān)系
6、確定權(quán)數(shù)。例如52與第j個(gè)自變量取值的平方成比例時(shí),即仃:=kx2時(shí),這時(shí)取權(quán)數(shù)為1皿wi(5)%更一般的情況是誤差項(xiàng)方差仃:與某個(gè)自變量Xj(與|ei|的等級(jí)相關(guān)系數(shù)最大的自變量)取值的幕函數(shù)xjm成比例,即%2=kxm,其中m是待定的未知參數(shù)。止匕時(shí)權(quán)數(shù)為wi=-Xij這時(shí)確定權(quán)數(shù)wi的問題轉(zhuǎn)化為確定幕參數(shù)m的問題,可以借助SPSS軟件解決。4.5 (4.5)證明:由得:式一元加權(quán)最小二乘回歸系數(shù)估計(jì)公式OQwN" w"yi - ?J2i 1:?0N=' w"/ - ? - KxJ2i 1?1 =' Wi(Xi - Xw)(yi - yw) i
7、 1n 2' Wi(Xi - Xw)i 1其中,以=而X* 兀=翥2>戊?0二 yw-?iXw4.6 驗(yàn)證(4.8)式多元加權(quán)最小二乘回歸系數(shù)估計(jì)公式。證明:對(duì)于多元線性回歸模型y=XB+g(1)3E()=0,cov(,e)=w2W,即存在異方差。設(shè)W=DD,'屈III0D=:;0III屈用D,左乘(1)式兩邊,得到一個(gè)新的的模型:D'y=DX0+D/e,即y*=X*0+:。因?yàn)镋(£)=E(DgD-1j=DE(e'2-1=D/。2WD-1'=<r2I,故新的模型具有同方差性,故可以用廣義最小二乘法估計(jì)該模型,得?二(XX),Xy&
8、#39;-(XD'D'X)XDD,y=(XWX)XWy原式得證。4.7 有同學(xué)認(rèn)為當(dāng)數(shù)據(jù)存在異方差時(shí),加權(quán)最小二乘回歸方程與普通最小二乘回歸方程之間必然有很大的差異,異方差越嚴(yán)重,兩者之間的差異就越大。你是否同意這位同學(xué)的觀點(diǎn)?說明原因。答:不同意。當(dāng)回歸模型存在異方差時(shí),加權(quán)最小二乘估計(jì)(WLS)只是普通最小二乘估計(jì)(OLS)的改進(jìn),這種改進(jìn)可能是細(xì)微的,不能理解為WLS一定會(huì)得到與OLS截然不同的方程來,或者大幅度的改進(jìn)。實(shí)際上可以構(gòu)造這樣的數(shù)據(jù),回歸模型存在很強(qiáng)的異方差,但WLS與OLS的結(jié)果一樣。加權(quán)最小二乘法不會(huì)消除異方差,只是消除異方差的不良影響,從而對(duì)模型進(jìn)行一點(diǎn)
9、改進(jìn)。4.8 對(duì)例4.3的數(shù)據(jù),用公式e'w計(jì)算出加權(quán)變換殘差ew,繪制加權(quán)變換殘差圖,根據(jù)繪制出的圖形說明加權(quán)最小二乘估計(jì)的效果。解:用公式ew=質(zhì)即計(jì)算出加權(quán)變換殘差ew,分別繪制加權(quán)最小二乘估計(jì)后的殘差圖和加權(quán)變換殘差圖(見下圖)。600.00000-400.0000020000000-口口口00-200.00000-400.00000*600000000.400.200.00-0.20-D40-100002000030000400001000020000300004000口根據(jù)繪制出的兩個(gè)圖形可以發(fā)現(xiàn)加權(quán)最小二乘估計(jì)沒有消除異方差,只是對(duì)原OLS的殘差有所改善,而經(jīng)過加權(quán)變換后
10、的殘差不存在異方差。4.9 參見參考文獻(xiàn)2,表4.12(Pi38)是用電高峰每小時(shí)用電量y與每月總用電量x的數(shù)據(jù)。(1)用普通最小二乘法建立y與x的回歸方程,并畫出殘差散點(diǎn)圖。解:SPSS輸出結(jié)果如下:CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)-.831.442-1.882.065x.004.000.83911.030.000a.DependentVariable:y由上表可得回歸方程為:y?-0.8310.004x殘差圖為:4.000002
11、.000000.00000 一通殘差-2.00000 -4.00000 誤差的方差隨著x的增加而增大(2)診斷該問題是否存在異方差;解:a由殘差散點(diǎn)圖可以明顯看出存在異方差,Mean Square0061752300006263F =98 60364Signif F = .0000b用SPSS做等級(jí)相關(guān)系數(shù)的檢驗(yàn),結(jié)果如下表所示:CorrelationsxabseiSpearman'srhoxCorrelationCoefficient1.000.318*Sig.(2-tailed).021N5353abseiCorrelationCoefficient.318*1.000Sig.(2
12、-tailed).021.N5353*X-x("t-aaaccl'ca.Correlationissignificantatthe0.05level(2-tailed).得到等級(jí)相關(guān)系數(shù)rs=0.318,p值=0.021,認(rèn)為殘差絕對(duì)值e與自變量x顯著相關(guān),存在異方差。(3)如果存在異方差,用幕指數(shù)型的權(quán)函數(shù)建立加權(quán)最小二乘回歸方程;解:SPSS輸出結(jié)果如圖:SourcevariablexLog-likelihoodFunction=-1211.0684.09POWERvalue=-2000Log-likelihoodFunction二-114.544854POWERvalu
13、e=-1500Log-likelihoodFunction=-108.465938POWERvalue=-1000Log-likelihood卜unction=-102.983319PUWtKvalue-Log-likelihoodFunction二-93353349POWERvalue=,000Log-likelihoodFunction=94836558POWERvalue=.500Log-likelihoodFunction二-92.501467POWERvalue=1.000Log-likelihoodFunction=-91537860POWERvalue=1.50QLog-like
14、liihoodFunction=-91756012POWERvalue=2000TheValueofPOWERMaximizing.LogdikelihoodVunction=1.500MultipleR.81185RSquare.65910AdjustedRSquare.65241StandardError00791AnalysisofVarianceDFSumofSquaresRegression100617523Residuals6100319397T SigT9.930 .00002296 .0258X/firisiblcsinthsEquationVariableBSEBBetax0
15、03557.000358811849(Constant)-.683463.297639Log-likelihoodFunction=-91.587860Coefficientsa,bModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)x-.683.004.298.000.812-2.2969.930.026.000a. DependentVariable:yb. WeightedLeastSquaresRegression-WeightedbyWeightforyfromWLS
16、,MOD_2x*-1.500由上述表可得,在m=1.5時(shí)對(duì)數(shù)似然函數(shù)達(dá)到最大,則幕指數(shù)的最優(yōu)取值為m=1.5。加權(quán)后的回歸方程為:yw=-0.683+0.004x0計(jì)算加權(quán)后的殘差,并對(duì)殘差絕對(duì)值和自變量做等級(jí)相關(guān)系數(shù)分析,結(jié)果如下表所示:%=0.321,P值為0.019<0.05,即加權(quán)最小二乘法沒有消除異方差,只是消除異方差的不良影響,從而對(duì)模型進(jìn)行一點(diǎn)改進(jìn)。CorrelationsxabseiwSpearman'srhoxCorrelationCoefficient1.000.321*Sig.(2-tailed).019N5353abseiwCorrelationCoeff
17、icient.321*1.000Sig.(2-tailed).019.N5353*.Correlationissignificantatthe0.05level(2-tailed).(4)用方差穩(wěn)定變換y'=jy消除異方差解:對(duì)應(yīng)變量做方差穩(wěn)定變換(y'=Jy)后,用最小二乘法做回歸,SPSS結(jié)果如下表:CoefficientsaModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant).582.1304.481.000x.001.000.8059.699.000a.
18、DependentVariable:sqrty則回歸方程為:?'=0.5822+0.0009529x。保存預(yù)測(cè)值?i,計(jì)算出殘差的絕對(duì)值后,計(jì)算等級(jí)相關(guān)系數(shù),見下表:CorrelationsxeeiiSpearman'srhoxCorrelationCoefficient1.000.160Sig.(2-tailed).254N5353eeiiCorrelationCoefficient.1601.000Sig.(2-tailed).254.N5353其中=0.160,P值=0.254>0.05,說明異方差已經(jīng)消除。1.10 試舉一可能產(chǎn)生隨機(jī)誤差項(xiàng)序列相關(guān)的經(jīng)濟(jì)例子答:例
19、如,居民總消費(fèi)函數(shù)模型:Ct=P0+P1Yt+&tt=1,2,n由于居民收入對(duì)消費(fèi)影響有滯后性,而且今年消費(fèi)水平受上年消費(fèi)水平影響,則可能出現(xiàn)序列相關(guān)性。另外由于消費(fèi)習(xí)慣的影響被包含在隨機(jī)誤差項(xiàng)中,則可能出現(xiàn)序列相關(guān)性(往往是正相關(guān))。1.11 序列相關(guān)性帶來的嚴(yán)重后果是什么?答:直接用普通最小二乘法估計(jì)隨機(jī)誤差項(xiàng)存在序列相關(guān)性的線性回歸模型未知參數(shù)時(shí),會(huì)產(chǎn)生下列一些問題:1. 參數(shù)估計(jì)量仍然是無偏的,但不具有有效性,因?yàn)橛凶韵嚓P(guān)性時(shí)參數(shù)估計(jì)值的方差大于無自相關(guān)性時(shí)的方差。2. 均方誤差MSE可能嚴(yán)重低估誤差項(xiàng)的方差3. 變量的顯著性檢驗(yàn)失去意義:在變量的顯著性檢驗(yàn)中,統(tǒng)計(jì)量是建立在參
20、數(shù)方差正確估計(jì)基礎(chǔ)之上的,當(dāng)參數(shù)方差嚴(yán)重低估時(shí),容易導(dǎo)致t值和F值偏大,即可能導(dǎo)致得出回歸參數(shù)統(tǒng)計(jì)檢驗(yàn)和回歸方程檢驗(yàn)顯著,但實(shí)際并不顯著的嚴(yán)重錯(cuò)誤結(jié)論。4. 當(dāng)存在序列相關(guān)時(shí),E仍然是P的無偏估計(jì),但在任一特定的樣本中,百可能嚴(yán)重歪曲B的真實(shí)情況,即最小二乘法對(duì)抽樣波動(dòng)變得非常敏感5. 模型的預(yù)測(cè)和結(jié)構(gòu)分析失效。1.12 總結(jié)DW檢驗(yàn)的優(yōu)缺點(diǎn)。答:優(yōu)點(diǎn):1.應(yīng)用廣泛,一般的計(jì)算機(jī)軟件都可以計(jì)算出DW值;2 .適用于小樣本;3 .可用于檢驗(yàn)隨機(jī)擾動(dòng)項(xiàng)具有一階自回歸形式的序列相關(guān)問題。缺點(diǎn):1.DW檢驗(yàn)有兩個(gè)不能確定的區(qū)域,一旦DW值落入該區(qū)域,就無法判斷,此時(shí),只有增大樣本容量或選取其他方法;2
21、 .DW統(tǒng)計(jì)量的上、下界表要求n>15,這是由于樣本如果再小,利用殘差就很難對(duì)自相關(guān)性的存在做出比較正確的診斷;3 .DW檢驗(yàn)不適應(yīng)隨機(jī)項(xiàng)具有高階序列相關(guān)性的檢驗(yàn)。4 .13表4.13中是某軟件公司月銷售額數(shù)據(jù),其中,x為總公司的月銷售額(萬元)了為某分公司的月銷售額(萬元)。(1)用普通最小二乘法建立y與x的回歸方程;ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.999a.998.998.09744.663a.Predictors:(Constant),總公司月銷售額xb.De
22、pendentVariable:某分公司月銷售額y回歸系數(shù)表aModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)總公司月銷售額x-1.435.176.242.002.999-5.930107.928.000.000a.DependentVariable:某分公司月銷售額y由上表可知:用普通二乘法建立的回歸方程為?=-1.435+0.176X(2)用殘差圖及DW檢驗(yàn)診斷序列的相關(guān)性;1 .以自變量x為橫軸,普通殘差為縱軸畫殘差圖如下:0.200000.10000_殘0.0000
23、0一-0.10000-0.20000120.0130.0140.0150.0160.0170.0180.0總公司月銷售額X從圖中可以看到,殘差有規(guī)律的變化,呈現(xiàn)大致反W形狀,說明隨機(jī)誤差項(xiàng)存在自相關(guān)性。2 .以0工(殘差1)為橫坐標(biāo),ei(殘差)為縱坐標(biāo),繪制散點(diǎn)圖如下:0.20000_0.10000殘0.00000一差-0.10000-0.20000-0.100000.000000.100000.20000殘差1-0.20000-由殘差圖可見大部分的點(diǎn)落在第一、三象限內(nèi),表明隨機(jī)擾動(dòng)項(xiàng)備存在著正的序列相關(guān);3 .從下表ModelSummarybModelRRSquareAdjustedRSq
24、uareStd.ErroroftheEstimateDurbin-Watson1.999a.998.998.09744.663a.Predictors:(Constant),總公司月銷售額xb.DependentVariable:某分公司月銷售額y可知DW:為0.663,查DWt,n=20,k=2,顯著性水平a=0.05,得dL=1.20,dU=1.41,由于0.663<1.20,知DW落入正相關(guān)區(qū)域,即殘差序列存在正的自相關(guān)。(3)用迭代法處理序列相關(guān),并建立回歸方程。自相關(guān)系數(shù)1-0.663=0.66852令yt=yt-xt=x-&一,然后用yt對(duì)xt作普通最小二乘回歸可得輸
25、出結(jié)果如下:CoefficientsModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)x2-.300.173.178.003.997-1.68949.673.109.000a.DependentVariable:y2ANOVAbModelSumofSquaresdfMeanSquareFSig.1Regression13.133113.1332467.405.000aResidual.09017.005Total13.22418a. Predictors:(Constant)
26、,x2b. DependentVariable:y2ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.997a.993.993.072961.360a.Predictors:(Constant),x2b.DependentVariable:y2可看到新的回歸方程的DW=1.360.且1.18<1.360<1.40,因而DW檢驗(yàn)落入不確定區(qū)域此時(shí),一步迭代誤差項(xiàng)的標(biāo)準(zhǔn)差為0.07296,小于片的標(biāo)準(zhǔn)差0.097y對(duì)£的回歸方程為yf=-0.3+0.173xt將y=yt-
27、0.6685比,/=xt-0.6685x一代人,還原為原始變量的方程?t=-0.3+0.6685y-+0.173xt-0.1157招由于一步迭代的D怖驗(yàn)落入不確定區(qū)域,因而可以考慮對(duì)數(shù)據(jù)進(jìn)行二步迭代,也就是對(duì)xt和yt重復(fù)以上迭代過程。進(jìn)行回歸結(jié)果如下:ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.995a.989.989.068491.696a. Predictors:(Constant),x3b. DependentVariable:y3ANOVAbModelSumofSquare
28、sdfMeanSquareFSig.1Regression6.99416.9941491.093.000aResidual.07516.005Total7.06917a.Predictors:(Constant),x3b.DependentVariable:y3止匕時(shí)DW的值為1.696,查DW表,n=18,k=2,顯著性水平a=0.05,得dL=1.16,dU=1.39,DW值大于dU,小于2,落入無自相關(guān)區(qū)域。誤差標(biāo)準(zhǔn)項(xiàng)0.0849,略小于一步迭代的標(biāo)準(zhǔn)差0.7296。但是在檢驗(yàn)都通過的情況下,由于一步迭代的r2值和F值均大于兩步迭代后的值,且根據(jù)取模型簡約的原則,最終選擇一步迭代的結(jié)果,
29、即:?t=-0.3+0.6685ytJ0.173-0.1157、(4)用一階差分的方法處理數(shù)據(jù),建立回歸方程;先計(jì)算差分Ayt=yt-ytA,Axt=xt-xt,然后用Ayt對(duì)Axt做過原點(diǎn)的最小二乘回歸,結(jié)果如下:ModelSummardModelRccaRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.990b.981.980.075761.462a. Forregressionthroughtheorigin(theno-interceptmodel),RSquaremeasurestheproportionofthev
30、ariabilityinthedependentvariableabouttheoriginexplainedbyregression.ThisCANNOTbecomparedtoRSquareformodelswhichincludeanintercept.b. Predictors:x2c. DependentVariable:y2d. LinearRegressionthroughtheOriginCoefficientsa,bModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1x2.169
31、.006.99030.461.000a.DependentVariable:y2b.LinearRegressionthroughtheOriginANOVAc,dModelSumofSquaresdfMeanSquareFSig.1Regression5.32515.325927.854.000aResidual.10318.006Total5.429b19a.Predictors:x2b.Thistotalsumofsquaresisnotcorrectedfortheconstantbecausetheconstantiszeroforregressionthroughtheorigin
32、.e. DependentVariable:y2f. LinearRegressionthroughtheOrigin由上面表,可知DW:為1.462>1.40=du,即D幃入不相關(guān)區(qū)域,可知?dú)埐钚蛄衑t不存在自相關(guān),一階差分法成功地消除了序列自相關(guān)。同時(shí)得到回歸方程為的=0.169Axt,將Ayt=yt-yt4,Axt=xt-xt4,代人,還原原始變量的方程yt=yt4+0.169(xt-xt.)(5)比較普通最小二乘法所得的回歸方程和迭代法、一階差分法所建立回歸方程的優(yōu)良性。答:本題中自相關(guān)系數(shù)?之0.6685,不接近于1,不適宜用差分法,另外由迭代法的F值及r2都大于差分法的值,故
33、差分法的效果低于迭代法的效果;而普通最小二乘法的隨機(jī)誤差項(xiàng)標(biāo)準(zhǔn)差為0.09744,大于迭代的隨機(jī)誤差項(xiàng)標(biāo)準(zhǔn)差0.07296,所以迭代的效果要優(yōu)于普通最小二乘法,所以本題中一次迭代法最好。4.14某樂隊(duì)經(jīng)理研究其樂隊(duì)CD盤的銷售額(y),兩個(gè)有關(guān)的影響變量是每周出場(chǎng)次x1和樂隊(duì)網(wǎng)站的周點(diǎn)擊率x2,數(shù)據(jù)見表4.14。(1)用普通最小二乘法建立y與x1、x2的回歸方程,用殘差圖及DW檢驗(yàn)診斷序列的自相關(guān)性;解:將數(shù)據(jù)輸入spss經(jīng)過線性回歸得到結(jié)果如下:ModelSummary(b)ModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Wa
34、tson1.541(a).293.264329.69302.745aPredictors:(Constant),x2,x1bDependentVariable:yANOVA(b)ModelSumofSquaresdfMeanSquareFSig.1Regression2205551.67821102775.83910.145.000(a)Residual5326177.03649108697.491Total7531728.71451aPredictors:(Constant),x2,x1bDependentVariable:yCoefficientsModelUnstandardizedCo
35、efficientsStandardizedCoefficientstSig.BStd.ErrorBeta1(Constant)-574.062349.271-1.644.107x1191.09873.309.3452.607.012x22.045.911.2972.246.029a.DependentVariable:y由以上3個(gè)表可知普通最小二乘法建立y與x1、x2的回歸方程,通過了r、F、t檢驗(yàn),說明回歸方程顯著。y與x1、x2的回歸方程為:y=-574.062+191.098x1+2.045x2殘差圖ei(et)ei1(et-i)為:600.00000400.00000200.0000
36、00.00000-200.00000-400.00000-600.00000-800.00000-800.00000-600.00000-400.00000-200.000000.00000200.00000400.00000600.00000Un standardized Residual從殘差圖可以看出殘差集中在1、3象限,說明隨機(jī)誤差項(xiàng)存在一階正自相關(guān)。DW=0.745查表得dl=1.46du=1.63,0<DW<dl,所以隨機(jī)誤差項(xiàng)存在一階正自相關(guān)(2)用迭代法處理序列相關(guān),并建立回歸方程。尸1-0.5DW=0.6275做變換:x1t'=x1t-邰10-1),x2t
37、'=x-(x2(t-1)yt=ym-i建立y與xi/,x/的回歸方程,spsS俞出為:ModelSummarybModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.688a.473.451257.855611.716a.Predictors:(Constant),x2tt,xlttb.DependentVariable:yttDW=1.716>du所以誤差項(xiàng)間無自相關(guān)性。<?=257.86CoefficientsaModelUnstandardizedCoefficientsStandardize
38、dCoefficientstSig.BStd.ErrorBeta1(Constant)-178.77590.338-1.979.054x1tt211.11047.747.5214.421.000x2tt1.436.629.2692.285.027a.DependentVariable:ytt回歸方程為:yt=-178.775+211.11x1f+1.436x2t'還原為:yt-0.627y(t-1)=-178.775+211.11*(x1t-0.627x1(t-1)+1.436*(x2t-0.627x2(t-1)(3)用一階差分法處理序列相關(guān),建立回歸方程。ModelSummary(c
39、,d)ModelRRSquare(a)AdjustedRSquareStd.ErroroftheEstimateDurbin-Watson1.715(b).511.491280.989952.040aForregressionthroughtheorigin(theno-interceptmodel),RSquaremeasurestheproportionofthevariabilityinthedependentvariableabouttheoriginexplainedbyregression.ThisCANNOTbecomparedtoRSquareformodelswhichinc
40、ludeanintercept.bPredictors:DIFF(x2,1),DIFF(x1,1)cDependentVariable:DIFF(y,1)dLinearRegressionthroughtheOriginDW=2.040>du,所以消除了自相關(guān)性,?=280.99ModelUnstandardizedCoefficientsStandardizedCoefficientstSig.BStd.ErrorBeta1DIFF(x1,1)210.11743.692.5444.809.000DIFF(x2,1)1.397.577.2742.421.019Coefficientsa,
41、ba. DependentVariable:DIFF(y,1)b. LinearRegressionthroughtheOrigin差分法回歸方程為:yyt-i=210.117(%-xi(t.i)+1.397(X2t-X2(t.i).(4)用最大似然法處理序列相關(guān),建立回歸方程。用SPSS軟件的自回歸功能,analyze>timeseries>autoregression:IterationHistoryRho(AR1)RegressionCoefficientsConstantAdjustedSumofSquaresMarquardtConstant周演出場(chǎng)次x1周點(diǎn)擊率x20.
42、000191.0982.045-574.0625326177.036.0011.610210.8701.443-489.2033230345.621.0012.631211.0251.435-487.0973228075.980a.000Melard'salgorithmwasusedforestimation.a.Theestimationterminatedatthisiteration,becausethesumofsquaresdecreasedbylessthan.001%.ResidualDiagnosticsNumberofResidualsNumberofParamet
43、ersResidualdfAdjustedResidualSumofSquaresResidualSumofSquaresResidualVarianceModelStd.ErrorLog-LikelihoodAkaike'sInformationCriterion(AIC)Schwarz'sBayesianCriterion(BIC)521483228075532617766599.102258.068-360.788729.575737.380ParameterEstimatesEstimatesStdErrortApproxSigRho(AR1).631.1115.677
44、.000Regression周演出場(chǎng)次x1211.02247.7204.422.000Coefficients周點(diǎn)擊率x21.436.6282.285.027Constant-487.145241.355-2.018.049Melard'salgorithmwasusedforestimation.?=0.631,?=258.068,(5)用科克倫-奧克特迭代法處理序列相關(guān),建立回歸方程AutocorrelationCoefficientRho(AR1)Std.Error.632.112TheCochrane-Orcuttestimationmethodisused.ModelFitS
45、ummaryRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson.689.474.441260.5601.748TheCochrane-Orcuttestimationmethodisused.RegressionCoefficientsUnstandardizedCoefficientsStandardizedCoefficientstSigBStd.ErrorBeta周演出場(chǎng)次x1211.13948.152.5224.385.000周點(diǎn)擊率x21.435.634.2692.263.028(Constant)-479.34124
46、5.124-1.956.056TheCochrane-Orcuttestimationmethodisused.?=0.632,?=260.560,DW=1.748。(6)用普萊斯-溫斯登迭代法處理序列相關(guān),建立回歸方程。AutocorrelationCoefficientRho(AR1)Std.Error.631.112ThePrais-Winstenestimationmethodisused.ModelFitSummaryRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson.688.473.440258.0661.746Th
47、ePrais-Winstenestimationmethodisused.?=0.632,?=258.066,DW=1.746。RegressionCoefficientsUnstandardizedCoefficientsStandardizedCoefficientstSigBStd.ErrorBeta周演出場(chǎng)次x1211.02547.710.5214.423.000周點(diǎn)擊率x21.435.628.2692.285.027(Constant)-487.100241.353-2.018.049ThePrais-Winstenestimationmethodisused.(7)比較以上各方法所
48、建回歸方程的優(yōu)良性。綜合以上各方法的模型擬合結(jié)果如下表所示:自回歸方法?F。f?0區(qū)=區(qū)?2=f?2'DWc?迭代法0.6275-179.0211.11.4371.716257.86差分法0210.11.3972.040280.99精確最大似然0.631-481.7211.01.436258.07科克倫-奧克特0.632-479.3211.11.4351.748260.560普萊斯-溫斯登0.631-487.1211.01.4351.746258.066由上表可看出:DW值都落在了隨機(jī)誤差項(xiàng)無自相關(guān)性的區(qū)間上,一階差分法消除自相關(guān)最徹底,但因?yàn)?=0.627,并不接近于1,故得到的方差
49、較大,擬合效果不理想。將幾種方法所得到的出信進(jìn)行比較,就可知迭代法的擬合效果最好,以普萊斯-溫斯登法次之,差分法最差。4.15 說明引起異常值的原因和消除異常值的方法。答:通常引起異常值的原因和消除異常值的方法有以下幾條,見表4.10:異常值原因異常值消除方法L數(shù)據(jù)登記誤差,存在抄寫或錄入的錯(cuò)誤重新核實(shí)數(shù)據(jù)2,數(shù)據(jù)測(cè)量誤差重新測(cè)量數(shù)據(jù)3.數(shù)據(jù)隨機(jī)誤差刪除或重新觀測(cè)異常值數(shù)據(jù),缺少重要自變量增加必要的自變量及缺少觀測(cè)數(shù)據(jù)增加觀測(cè)數(shù)據(jù),適當(dāng)擴(kuò)大自變量取值范圍6.存在異方差采用加權(quán)線性回歸7.模型選用錯(cuò)誤,線性模型不適用改用非線性回回模型4.16 對(duì)第3章習(xí)題11做異常值檢驗(yàn)。研究貨運(yùn)總量y(萬噸)與工業(yè)總產(chǎn)值x1(億元)、農(nóng)業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中數(shù)學(xué)人教版九年級(jí)下冊(cè)同步聽評(píng)課記錄第27章章末復(fù)習(xí)
- 瑜伽私教服務(wù)合同(2篇)
- 甲醛超標(biāo)租賃合同(2篇)
- 湘教版九年級(jí)上冊(cè)聽評(píng)課記錄:4.2 正切
- 湘教版地理七年級(jí)下冊(cè)《第一節(jié) 日本》聽課評(píng)課記錄2
- 四年級(jí)英語聽評(píng)課記錄表
- 五年級(jí)蘇教版數(shù)學(xué)上冊(cè)《認(rèn)識(shí)負(fù)數(shù)》聽評(píng)課記錄(校內(nèi)大組)
- 蘇科版數(shù)學(xué)七年級(jí)上冊(cè)3.2 代數(shù)式教聽評(píng)課記錄
- 湘師大版道德與法治九年級(jí)上冊(cè)4.1《多彩的人類文化》聽課評(píng)課記錄
- 小學(xué)數(shù)學(xué)-六年級(jí)下冊(cè)-3-2-2 圓錐的體積 聽評(píng)課記錄
- 四川省自貢市2024-2025學(xué)年上學(xué)期八年級(jí)英語期末試題(含答案無聽力音頻及原文)
- 2025-2030年中國汽車防滑鏈行業(yè)競(jìng)爭格局展望及投資策略分析報(bào)告新版
- 2025年上海用人單位勞動(dòng)合同(4篇)
- 二年級(jí)上冊(cè)口算題3000道-打印版讓孩子口算無憂
- 2025年生物安全年度工作計(jì)劃
- 人教版數(shù)學(xué)六年級(jí)下冊(cè)全冊(cè)核心素養(yǎng)目標(biāo)教學(xué)設(shè)計(jì)
- 通用電子嘉賓禮薄
- 新概念英語第三冊(cè)課后習(xí)題答案詳解
- 有機(jī)化學(xué)共振論
- 家訪手記(5篇)
- 橋梁工程質(zhì)量保證措施
評(píng)論
0/150
提交評(píng)論