版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Understanding DSP, Second Edition1Chapter 3:z-TransformUnderstanding DSP, Second Edition2DSP2Contents3.1 The z-Transform3.1.1 Poles and Zeros on the z-Plane and Stability3.1.2 The ROC of z-Transform3.1.3 The Properties of z-Transform3.2 The Inverse z-Transform3.2.1 General Expression of Inverse z-Tr
2、ansform3.2.2 Inverse z-Transform by Partial-Fraction ExpansionUnderstanding DSP, Second Edition33Z TransformZT of the sequence x(n) is defined as:Z, complex variableInverse ZT:Understanding DSP, Second EditionZ TransformExample Determine the z-transform for . with constant . Solution:If , then the a
3、bove summation converges. Thus,)(nx)()(nunxn01)()()()(nnnnnnnzznuznxzX1|1z| | 11)()(101z,zzzzzXnnUnderstanding DSP, Second Edition55Z TransformWe have to ask if X(z) converge?For any x(n), the region of converge (ROC) of ZT is the set of values of the complex variable z for which the z-transform uni
4、formly converges.i.e.: z: X(z) existsDifferent x(n) with different ROC may have the same ZT.So, the ROC of each X(z) should be defined.Understanding DSP, Second Edition Consider thatIfthen is exist. In other words, if the series is absolutely convergent, then it uniformly converges to an analytical
5、function in its ROC. Such a condition is sufficient and necessary for the z-transform of a sequence to exist.)(nx01)()()()(nnnnnnznxznxznxzX0 1)()( )()( | )(nnnnnnnn|znx|znx|znx|znx|zX|)(zXUnderstanding DSP, Second Edition The convergence condition for the z-transform is as follows: (1)If the limit
6、of the nth root of the absolute value of the nth term in the following summationsatisfiesor equivalently,)(nx0 1)()()( | )(nnnnnn|znx|znx|znx|zX|0|)(|nnznx1| )(lim1|)(lim11n/nn/nnnx|z|znx|1/1| )(|lim |rnxznnROC for the z-transform of a General SequenceIf the z-transform of a sequence is exist, thenU
7、nderstanding DSP, Second Editionthen the seriesuniformly converges. (2) ConsideringIfor equivalently,then the series 0)(nnznx11)()(nnnn|znx|znx|1| )(lim|)(lim11n/nn/nnnx|z|znx|2/1| )(|lim/1|rnxznn1)(nn|znx| uniformly converges.Understanding DSP, Second Edition (3) Combining the above results, we see
8、 thatIts ROC is shown in the following Figure:)(nx2101 | r :ROC ,)()( )()(rzznxznxznxzXnnnnnnUnderstanding DSP, Second Edition1010Z Transform: Pole-zero PlotROC:ROC is determined by |z|=r, in terms of the theory of complex variable function, it can be a circular band: r1|z|r2In the ROC, X(z) is an a
9、nalytic function, and the pole of X(z) is out of ROC, with the pole as the edge.r1 can be zero, r2 can be .If r2r1,it means ROC is not exist, neither the ZT.Understanding DSP, Second Edition1111Z Transform: Pole-zero PlotSystem has ZT as:Understanding DSP, Second Edition12Z Transformcausal sequence
10、:When nr1, outside of radius r1.12Understanding DSP, Second Edition13Z TransformExample 1:Determine the ZT of x(n):13)()(1nuanxnUnderstanding DSP, Second Edition14Z TransformSolution:14The PoleUnderstanding DSP, Second Edition15Z Transformanticausal Sequence:When n 0, x(n)=0;X(z) only contains the p
11、ositive indexes of z.The ROC: |z|r2, inside of radius r2.15Understanding DSP, Second Edition16Z TransformExample 2:Determine the ZT of x1(n):16Understanding DSP, Second Edition17Z TransformSolution:17The PoleUnderstanding DSP, Second Edition18Z TransformAbout these two examples, if b=a:But:18=Unders
12、tanding DSP, Second Edition19Z TransformIf b=a:X1(z) has the same form with X(z), except for the ROC.That implies that the ROC insures only one ZT of x(n).Different ROC means different ZT.ROC plays an important role in system analysis.19Understanding DSP, Second Edition20Z TransformTwo-side Sequence
13、:Contains right-side sequence and left-side sequence.So the ROC is defined as: r1|z|r2 or not exist if r2|a|, where a is the pole.(3) anticausal Sequence (n0): the ROC is |z|b|, where b is the pole.23Understanding DSP, Second EditionQuestions:1.Finite-length Sequences12 )()(21nn,znxzXnnnn2. Right-Si
14、ded Sequences1)()(nnnznxzX3. Left-Sided Sequences2)()(nnnznxzXROC forUnderstanding DSP, Second Edition The z-Transform of Basic Sequences (1) The Unit Sample Sequence (2) The Unit Step Sequence (3) The Anticausal Unit Step Sequence )(nx | 0 1)()(|z,znzXnn)()(nnx)()(nunx1 | 111)()()(101|z,zzzzznuzXnn
15、nn) 1()(nunx1 | 1)( )() 1()(11|z,zzzzznuzXnnnnnnUnderstanding DSP, Second EditionThe z-Transform of Basic Sequences (4) The Ramp Sequence Consideringand taking the derivative on two sides in this equation with respect to the variable , we getThis leads to )(nx)()(nnunx0)()(nnnnnzznnuzX1 | 1110|z,zzn
16、n1z1 | )(11)(210011|z,znzzznnnnn1 | ) 1()(1)(22110|z,zzzznzzXnnUnderstanding DSP, Second Edition27Common ZT PairsThe Table of common ZT pairs:27Understanding DSP, Second Edition|)1 () 1(|)1 ()(|)cos2(1)cos(1)(cos|)cos2(1)sin()(sin21121122101002210100bzbzbznunbazazaznunaazzazwazwanunwaazzazwazwanunwa
17、ROCTransformSequencennnnCommon ZT PairsUnderstanding DSP, Second Edition29The Properties of ZTLinear29ROC2 :ROC ),()(zYnyZROC1 :ROC ),()(zXnxZROC2ROC1 containing ROC with Understanding DSP, Second Edition. ) 1()()(nuanuanxnnExample: Find the z-transform for Solution: We letwhere)()()(21nxnxnx)()(1nu
18、anxn) 1()(2nuanxnandThe Properties of ZTUnderstanding DSP, Second EditionThenandBy the linearity property, we haveOn the other hand, we consider that)(nx| | :ROC1 )()(1az,azznuaZzXn| | :ROC2 )1()(2az,azanuaZzXn | 0 :ROC 1 )()()()(21z,azaazzzXzXnxZzX)() 1()()(nnuanuanxnnThe Properties of ZTUnderstand
19、ing DSP, Second Editionwhose z-transform is given by | 0 :ROC 1)()()(z,nZnxZzXThe Properties of ZTUnderstanding DSP, Second Edition2. Time shifting3. Frequency shifting (scaling in the z-domain)The Properties of ZTUnderstanding DSP, Second Edition4. Time Reversal IfthenHence, if the is then the ROC
20、of the is)(nxxzXnxZROC with ),()(x/zXnxZROC1 :ROC ),()(1xROCxxrzr | )(1zX. /1 | /1xxrzrThe Properties of ZTUnderstanding DSP, Second Edition35The Properties of ZT5. Differential6. Conjugation35Understanding DSP, Second Edition36The Properties of ZT7. Initial Value TheoremIf n0 and choose formula No.
21、1. Because X(z) have limited poles inside of C and zn-1 is analytic at z=0, but there are high order poles at z= for zn-1 when n is large.57Understanding DSP, Second Edition58Inverse ZT - General Expression of Inverse z-TransformNote:If the ROC is inside of a circle, usually we calculate x(n) at n0
22、and choose formula No.2. Because X(z) have limited poles outside of C and zn-1 is analytic at z=, but there are high order poles at z=0 for zn-1 when n is large. If the ROC is a ring, usually we use both of formula No.1 and No.2.58Understanding DSP, Second Edition59Inverse ZT - General Expression of
23、 Inverse z-TransformNote:Actually, n=0 is not the only edge for residue method. Now, we can reach one more general method:Extract X(z)=X0(z)zm, m is an integer. Therefore, X0(z) is analytic at both n=0 and n=. Then: X(z)zn-1 =X0(z)zmzn-1=X0(z)zn+m-1=X1(z)After determining the ROC of X(z) and C:We ca
24、n get x(n) at n1-m by calculate the residue of X1(z) inside of C and then get -x(n) at n 1Both of the two poles are inside of C, use formula No.1.When n1-m=0, x(n)=0. When n1-m=0: 63Understanding DSP, Second Edition64Inverse ZT - General Expression of Inverse z-TransformSolution:(2) If ROC: z 1/3Bot
25、h of the two poles are outside of C, use formula No.2.When n1-m=0, x(n)=0. When n1-m=0: 64Understanding DSP, Second Edition65Inverse ZT - General Expression of Inverse z-TransformSolution:(3) If ROC :1/3 z 1Pole z=1/3 is inside of C, use formula No.1. When n0:Pole z=1 is outside of C, use formula No
26、.2. When n0:65Understanding DSP, Second Edition66Inverse ZT - General Expression of Inverse z-TransformSolution:(3) If ROC: 1/3 z r1):For ROC (|z|r2):69Understanding DSP, Second Edition70Inverse ZT - Part fractional methodFor ROC (r1|z|1, x(n) is causal sequence.(2) For ROC |z|1/3, x(n) is anticausa
27、l sequence.73Understanding DSP, Second Edition74Inverse ZT - Part fractional methodSolution:X(z) has two poles, z1=1 and z2=1/3.(3) For ROC 1/3|z|1, the x(n) is Two-side sequence.74Understanding DSP, Second Edition Starts withwhere and are positive integers and, and are real constants. Case 1: If ,
28、thenwhere for are simple poles and is a repeated pole with order . If all poles are distinct, then the xxNNMMR|z|R,zazazazbzbzbbzX 1)(221122110NMibiakzLN,k ,2, 1MN pzLxxLkpkLNkkkNNNNMNMNNR|z|RzzzBzzzAazazazzbzbzbzzX , )()( )(1k111112110Inverse ZT - Part fractional methodUnderstanding DSP, Second Edi
29、tionsecond summation disappears and the first summation contains terms. The expansion coefficients: Comparatively, the inverse z-transform for the expanded expression is easy to be obtained. If all poles are simple, then NLN,k,zzXzzAkzzkk , 2, 1 | )()(L,k,zzXzzdzdkLBpzzLpkLkLk , 2, 1 | )()()!(1Nkkzz
30、zZAzXZnx1k11)()(Inverse ZT - Part fractional methodUnderstanding DSP, Second EditionWhereExample Using the partial fraction expansion, find the inverse z-transform for Solution:whereand. 1 | ),505111/()(21zz.z.zX1 | 0.5)(z1)(z0.5)1)(z(z)(212z,zAzAzzX20.5)(z)(1)(z1 1 1zz|z|zzXA11)(z)(0.5)(z50 50 2.z.
31、z|z|zzXAxknkxknkkRznuzRznuzzzzZ | ),1()( | ),()(1Inverse ZT - Part fractional methodUnderstanding DSP, Second EditionTherefore,Thus,Example Determine the sequence from Solution: 1 | 0.5)(z1)(z2)(z,zzzX)()50(2)()50()(2 )()(1nu.nu.nuzXZnxnn)(nx. 3 | 2 ),212020/()(211zz.z.zzX3 | 2 ,23)2)(3(5 65)(212zzz
32、AzzAzzzzzzzXInverse ZT - Part fractional methodUnderstanding DSP, Second EditionwhereandTherefore,Thus,12)(z5)(3)(z3 3 1zz|zzXA13)(z5)(2)(z2 2 2zz|zzXA3 | 2 ,23)(zzzzzzX)(2) 1()3()()(1nunuzXZnxnnInverse ZT - Part fractional methodUnderstanding DSP, Second Edition Case 2: If thenwhere may be determin
33、ed by performing the long division. The proper rational part is expanded using the partial fraction expansion, which is identical to that in case 1.Example Determine the sequence from Solution: Decompose the given function into, MN 1)(2211)1(1100NNNMNMkkkzazazazczcczCzXxxLkpkLNkkkNMkkkR|z|RzzzBzzzAzC , )()(1k10kC1 | ,)21 ()23(121)(2121zz/z/zzzXInverse ZT - Part fractional methodUnderstanding DSP, Second EditionIf we denote the proper r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)性化上海離婚合同模板2024年
- 二零二五版櫥柜行業(yè)人才培訓(xùn)合作合同匯編3篇
- 二零二四年商場(chǎng)營(yíng)業(yè)員工作調(diào)動(dòng)及勞動(dòng)合同2篇
- 2025年度墓地陵園墓地租賃合同范本3篇
- 2025版房地產(chǎn)項(xiàng)目融資合同參考4篇
- 二零二五年度礦產(chǎn)資源存貨質(zhì)押擔(dān)保服務(wù)合同4篇
- 二零二五年度木結(jié)構(gòu)建筑防火處理木工分包合同規(guī)范2篇
- 二零二五年度體育場(chǎng)館租賃授權(quán)委托合同模板4篇
- 2025年出納工作擔(dān)保與合規(guī)操作合同3篇
- 二零二五年度大連市大數(shù)據(jù)中心建設(shè)合同3篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- 企業(yè)融資報(bào)告特斯拉成功案例分享
- 五年(2020-2024)高考地理真題分類匯編(全國(guó)版)專題12區(qū)域發(fā)展解析版
- 《阻燃材料與技術(shù)》課件 第8講 阻燃木質(zhì)材料
- 低空經(jīng)濟(jì)的社會(huì)接受度與倫理問(wèn)題分析
- GB/T 4732.1-2024壓力容器分析設(shè)計(jì)第1部分:通用要求
- 河北省保定市競(jìng)秀區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末生物學(xué)試題(解析版)
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件
- 六編元代文學(xué)
評(píng)論
0/150
提交評(píng)論