版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、普昌信王皮溜二中人教新課標版七年級數學 觀察可知觀察可知: :長方體有長方體有_個面,個面,面與面相交的地方形成了面與面相交的地方形成了_條線條線,線與線相交成,線與線相交成_個點;三棱柱有個點;三棱柱有_個面?zhèn)€面, ,面與面面與面相交的地方形成了相交的地方形成了_條線,線與線相交成條線,線與線相交成_個點個點 問題問題: :物體的構成往往包含多種元素,幾何圖形也是如此物體的構成往往包含多種元素,幾何圖形也是如此. .觀觀察長方體模型,它有幾個面察長方體模型,它有幾個面?面與面相交的地方形成了幾條線?面與面相交的地方形成了幾條線?線與線相交成幾個點,三棱柱呢?線與線相交成幾個點,三棱柱呢?61
2、28596歸納:圖形的構成元素包括歸納:圖形的構成元素包括_、 _、 _、 _點點線線面面體體 我們先來認識我們先來認識“體體”. .觀察一本書、圓罐、籃球,從它們觀察一本書、圓罐、籃球,從它們外形中分別可以抽象出什么立體圖形?外形中分別可以抽象出什么立體圖形?請再舉出一些你所熟悉的立體圖形請再舉出一些你所熟悉的立體圖形. . 歸納歸納: :長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是都是幾何體幾何體,幾何體簡稱,幾何體簡稱體體. . 如圖如圖: :四棱錐有四棱錐有_個面;圓柱有個面;圓柱有_個面;圓錐有個面;圓錐有_個面?zhèn)€面. .再聯(lián)想上一課再
3、聯(lián)想上一課“展開圖展開圖”的知識,可以得出結論:包圍的知識,可以得出結論:包圍著體的是著體的是_._.532面面觀察這些面,它們有區(qū)別嗎?觀察這些面,它們有區(qū)別嗎? 面是有區(qū)別的,可以分為面是有區(qū)別的,可以分為平面平面和和曲面曲面;圍成體的面只;圍成體的面只是平面或曲面的一部分是平面或曲面的一部分. . 觀察我們的教室和周圍環(huán)境,舉出一些實際生活中觀察我們的教室和周圍環(huán)境,舉出一些實際生活中“面面”的例子,并指出哪些面是平的,那些面是曲的?的例子,并指出哪些面是平的,那些面是曲的?曲面曲面平面平面平面平面曲面曲面練習:練習:圍成下面這些立體圖形的各圍成下面這些立體圖形的各個面中,哪些面是平的?
4、哪些面是個面中,哪些面是平的?哪些面是曲的?曲的?平面平面曲面曲面?觀察幾何體模型,回答下列問題:觀察幾何體模型,回答下列問題:(1 1)面與面相交的地方形成了什么圖形?它們有什么不同?)面與面相交的地方形成了什么圖形?它們有什么不同?(2 2)線與線相交的地方形成了什么圖形?它們有什么不同?)線與線相交的地方形成了什么圖形?它們有什么不同?小組討論 結論結論: : 面與面相交的地方形成面與面相交的地方形成線線,線分為,線分為直線直線和和曲線曲線;想一想想一想, ,舉出生活中符合線、點形象的例子舉出生活中符合線、點形象的例子. .線的形象線的形象面與面相交的地方形成線面與面相交的地方形成線面與
5、面相交的地方形成線面與面相交的地方形成線線:直線和曲線線:直線和曲線蜿蜒的盤山公路蜿蜒的盤山公路筆直的分道線筆直的分道線線與線相交的地方形成點線與線相交的地方形成點線與線相交的地方是線與線相交的地方是點點結論結論: :點點點無大小點無大小點只代表位置,點無大小,所以點都是相同的點只代表位置,點無大小,所以點都是相同的.結論結論: : 你能舉出一些實際生活中給你以你能舉出一些實際生活中給你以點點、線線的的形象的例子嗎形象的例子嗎? 議一議議一議 幾何圖形是由點、線、面、體組成的幾何圖形是由點、線、面、體組成的探究二探究二 物體的運動會留下運動軌跡物體的運動會留下運動軌跡, ,這些運動軌跡往往也這
6、些運動軌跡往往也能抽象成幾何圖形能抽象成幾何圖形. .如果把筆尖看成一個點如果把筆尖看成一個點, ,這個點在這個點在紙上運動時紙上運動時, ,形成的圖形是什么形成的圖形是什么? ?動手試一試動手試一試. .歸納結論歸納結論: :點動成線點動成線. .探究二探究二舉出生活中能夠說明舉出生活中能夠說明“點動成線點動成線”這一結論的例子這一結論的例子. .謎語謎語 :千條線萬條線 落到水中看不見(雨點)(雨點)你能用數學語言來描你能用數學語言來描述這一現(xiàn)象嗎?述這一現(xiàn)象嗎?點動成點動成線線點點動動成成線線點點動動成成線線 汽車的雨刷在擋風玻璃上畫出一個扇面,從幾何汽車的雨刷在擋風玻璃上畫出一個扇面,
7、從幾何的角度觀察這種現(xiàn)象,你可以得出什么結論?的角度觀察這種現(xiàn)象,你可以得出什么結論?線動成面線動成面. .結論:結論:線動成面線動成面你還能舉出線動成面的例子嗎你還能舉出線動成面的例子嗎三角形三角形繞一邊繞一邊旋轉成旋轉成圓錐體圓錐體 直角三角形紙片繞它的一直角邊直角三角形紙片繞它的一直角邊旋轉一周旋轉一周,形成了什么圖形形成了什么圖形?議一議議一議 長方形長方形繞一邊繞一邊旋轉成旋轉成圓柱體圓柱體 你能舉出生活中的實例進一步說明這一結論嗎你能舉出生活中的實例進一步說明這一結論嗎?點動成點動成線動成線動成面動成面動成線線面面體體體是由面組成體是由面組成面與面相交成線面與面相交成線線與線相交成
8、點線與線相交成點點點線線面面體體動成動成動成動成動成動成小結:小結: 電視屏幕上的畫面,大型團體操的背景圖案,都電視屏幕上的畫面,大型團體操的背景圖案,都可以看作由點組成的可以看作由點組成的. . 由此由此, ,我們認為幾何圖形都是由我們認為幾何圖形都是由_、 _、_、 _組成的組成的, ,_是構成圖形的基本元素是構成圖形的基本元素. .點點線線體體面面點點點點是構成圖形是構成圖形的基本元素的基本元素你還能舉出一些符合這一觀點的例子嗎?你還能舉出一些符合這一觀點的例子嗎? 1.1.粉筆盒的形狀類似于長方體,它是由粉筆盒的形狀類似于長方體,它是由 個個面圍成的,這些面都是面圍成的,這些面都是 ,
9、有,有 個個頂點,經過每個頂點都有頂點,經過每個頂點都有 條棱。條棱。鞏固練習:鞏固練習:六六長方形長方形八八三三2. 2. 飛機飛行表演在空中留下漂亮的飛機飛行表演在空中留下漂亮的“彩彩帶帶”,”,用數學知識解釋為:用數學知識解釋為: 。 把一張紙對折,形成一條折痕把一張紙對折,形成一條折痕, ,用數學用數學知識解釋為:知識解釋為: 。點動成線點動成線面面相交形成線面面相交形成線1.多姿多彩的圖形是由多姿多彩的圖形是由點、線、面、體點、線、面、體組成組成.點點是構成圖形的基本元素。是構成圖形的基本元素。2.點無大小,線有點無大小,線有直線直線和和曲線曲線,面有,面有平面平面和和曲面曲面。3.
10、點動成線,線動成面,面動成體點動成線,線動成面,面動成體。4.體由面圍成,面與面相交成線,線與線相交成體由面圍成,面與面相交成線,線與線相交成點點。小結小結點點 線線 面面 體體點動成線點動成線面動成體面動成體線動成面線動成面 線與線相交形成點線與線相交形成點面與面相交形成線面與面相交形成線包圍著體的部分是面包圍著體的部分是面請您欣賞請您欣賞 點、線、面、體經過運動變化,形成點、線、面、體經過運動變化,形成多姿多彩世界。多姿多彩世界。點、線、面、體經過運動點、線、面、體經過運動變化,形成多姿多彩世界。變化,形成多姿多彩世界。線線動動成成面面夜空中繁星點點夜空中繁星點點作業(yè)作業(yè): : 1.多姿多彩的圖形是由多姿多彩的圖形是由點、線、面、體點、線、面、體組成組成.點是構成圖點是構成圖形的基本元素。形的基本元素。 2.點無大小,線有點無大小,線有直線直線和和曲線曲線,面有,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度整棟倉庫出租承包及倉儲服務合同4篇
- 2024版技術開發(fā)與轉讓合同具體內容
- 2025年度無人機航空拍攝服務合同3篇
- 2024版農業(yè)蔬菜大棚承包合同
- 2025年度體育健身充值卡銷售與合作推廣合同4篇
- 2025年度水電工程招投標代理服務承包合同集錦4篇
- 2025年度新型建筑材料代售合同協(xié)議范本4篇
- 2025年度商業(yè)地產資產保值增值顧問服務合同4篇
- 2025年度新能源企業(yè)代理記賬與綠色金融合作合同4篇
- 2025年度智能窗簾系統(tǒng)承包安裝與維護合同范本4篇
- 金蓉顆粒-臨床用藥解讀
- 社區(qū)健康服務與管理教案
- 2023-2024年家政服務員職業(yè)技能培訓考試題庫(含答案)
- 2023年(中級)電工職業(yè)技能鑒定考試題庫(必刷500題)
- 藏歷新年文化活動的工作方案
- 果酒釀造完整
- 第4章-理想氣體的熱力過程
- 生涯發(fā)展展示
- 法治副校長專題培訓課件
- 手術室應對突發(fā)事件、批量傷員應急預案及處理流程
- 動機-行為背后的原因課件
評論
0/150
提交評論