《 直線與方程3.1直線的傾斜角與斜率3.1直線的傾斜角與斜率課件》高中數(shù)學(xué)人教A版版必修2237_第1頁
《 直線與方程3.1直線的傾斜角與斜率3.1直線的傾斜角與斜率課件》高中數(shù)學(xué)人教A版版必修2237_第2頁
《 直線與方程3.1直線的傾斜角與斜率3.1直線的傾斜角與斜率課件》高中數(shù)學(xué)人教A版版必修2237_第3頁
《 直線與方程3.1直線的傾斜角與斜率3.1直線的傾斜角與斜率課件》高中數(shù)學(xué)人教A版版必修2237_第4頁
《 直線與方程3.1直線的傾斜角與斜率3.1直線的傾斜角與斜率課件》高中數(shù)學(xué)人教A版版必修2237_第5頁
已閱讀5頁,還剩47頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、直線的傾斜角與斜率普通高中課程標準實驗教科書數(shù)學(xué)必修二3.1.1節(jié)教材北京市航天中學(xué) 趙偉說課內(nèi)容教學(xué)目標確定教學(xué)背景分析 教學(xué)過程的設(shè)計與實施 教學(xué)特點分析 教學(xué)背景分析 本節(jié)教學(xué)是人教版數(shù)學(xué)必修2第三章直線與方程的起始課,是高中解析幾何內(nèi)容的開始,直線的傾斜角和斜率是解析幾何的重要概念之一,是刻畫直線傾斜程度的幾何要素和代數(shù)表示,是平面直角坐標系內(nèi)以坐標法的方式來研究直線的方程形式及其幾何性質(zhì)(如直線的位置關(guān)系、夾角、點到直線的距離等)的思維的起點,也為后續(xù)的學(xué)習(xí)奠定了基礎(chǔ)。通過本節(jié)內(nèi)容的學(xué)習(xí),不僅要讓學(xué)生理解兩個概念、得到一個公式,更要了解析幾何問題代數(shù)化的過程和意義,初步滲透“坐標法”

2、與數(shù)形結(jié)合思想方法。因此,本節(jié)課有著開啟全章,滲透方法,明確方向,承前啟后的作用。在本課時的教學(xué)中不僅要落實顯性知識傾斜角和斜率,更要落實隱性知識幾何問題代數(shù)化。教材分析: 我所教的是普通校的高一學(xué)生,我校學(xué)生基礎(chǔ)較差,高一學(xué)生經(jīng)歷了函數(shù)的學(xué)習(xí),初步具備了數(shù)形結(jié)合的能力,另外在初中他們已經(jīng)學(xué)過“坡度”,“坡角”,已經(jīng)具備了直角坐標系的相關(guān)知識,因此從這些知識出發(fā),學(xué)生能比較容易理解和掌握傾斜角和斜率的概念以及它們之間的關(guān)系。但根據(jù)高一普通班學(xué)生的認知規(guī)律,還沒有形成自覺地把數(shù)學(xué)問題抽象化的能力,缺乏“數(shù)形結(jié)合”思想,所以研究“點坐標與斜率間的關(guān)系”無疑是一個大挑戰(zhàn)。然而發(fā)展學(xué)生的“數(shù)形結(jié)合”思

3、想,“用代數(shù)方法研究幾何問題的能力”,對于學(xué)生高中三年的數(shù)學(xué)學(xué)習(xí)有著非常重要的意義。因而,在教學(xué)過程中,如何創(chuàng)設(shè)有趣的情境激發(fā)學(xué)生的求知欲,如何設(shè)置問題鏈引導(dǎo)學(xué)生思考,巧妙激活學(xué)生的數(shù)學(xué)思維,并讓學(xué)生初步體會數(shù)形結(jié)合思想,這對教師提出了挑戰(zhàn)。教學(xué)背景分析學(xué)情分析:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式重點直線的斜率與它的傾斜角之間的關(guān)系難點教學(xué)背景分析教學(xué)重點與難點:教學(xué)方式以問題為導(dǎo)向,教師啟發(fā)講授與學(xué)生探究相結(jié)合輔助工具:多媒體 教學(xué)背景分析教學(xué)目標 知識與技能:理解傾斜角與斜率的概念,了解二者之間的關(guān)系,掌握過兩點的直線斜率的計算公式,會求直線的斜率;1 過

4、程與方法:經(jīng)歷對傾斜角與斜率的探究的過程,提高分析問題、解決問題的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法;2 情感態(tài)度與價值觀:通過日常生活中的一些實例 ,揭示坡度和直線的傾斜程度之間的聯(lián)系,感受生活中數(shù)學(xué)無處不在;通過斜率概念的建立和斜率公式的推導(dǎo),初步體會應(yīng)用坐標法解決幾何問題,培養(yǎng)嚴謹?shù)目茖W(xué)態(tài)度。3教學(xué)過程的設(shè)計與實施創(chuàng)設(shè)情境 引入新課 探索新知形成概念嘗試推導(dǎo)深化認識應(yīng)用舉例加深理解歸納小結(jié)布置作業(yè)教學(xué)過程的設(shè)計與實施 引 言1、本環(huán)節(jié)需要解決的主要問題:通過上網(wǎng)查相關(guān)資料及對解析幾何的介紹使學(xué)生明確研究方向和研究方法. 2、具體教學(xué)安排:介紹解析幾何創(chuàng)始人笛卡爾和費馬在數(shù)學(xué)發(fā)展史中的巨大貢

5、獻,解析幾何最基本的研究方法坐標法.設(shè)計意圖使學(xué)生了解學(xué)習(xí)的新內(nèi)容解析幾何的研究問題的方法及意義 1、本環(huán)節(jié)需要解決的主要問題:通過展示人騎自行車上坡的圖片,使學(xué)生感受到坡的緩與陡實際上是直線的傾斜程度的不同,進而提出本課的主要任務(wù)尋求刻畫直線的傾斜程度的量.2、具體教學(xué)安排:展示人騎自行車上坡的圖片,并從圖片中提取出平面直角坐標系中的一條直線,通過問題情境,提出課題. 創(chuàng)設(shè)情境 引人新課設(shè)計意圖激發(fā)學(xué)生學(xué)習(xí)興趣,充分調(diào)動學(xué)習(xí)積極性 1、本環(huán)節(jié)需要解決的主要問題:讓學(xué)生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的 并初步體會數(shù)形結(jié)合思想. 2、具體教學(xué)安排:

6、探索新知 形成概念思考:怎樣畫黑板的對角線?或者說用一個很小等腰直角的三角板,能不能不畫出一個很大的正方形的對角線?怎么畫?設(shè)計意圖激發(fā)學(xué)生興趣,引起認知沖突 需要新知識認知沖突函數(shù)用解析式、表格法、圖象法列?問題1: 某商場要將單價分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售, 如何對混合糖果定價才合理?建構(gòu)定義 初步理解權(quán)數(shù)加權(quán)平均思考:(1)你能寫出X的分布列嗎?(2)你能利用這個分布列計算出每1kg混合糖果的合理定價嗎?若在混合糖果中,任取一顆糖果,所取糖果的價格設(shè)為X,合理定價這一問題已經(jīng)解決,但它和我們之前學(xué)習(xí)的分布列有什么聯(lián)系呢?基于這點考慮

7、,我設(shè)計了如下兩個問題: 建構(gòu)定義 初步理解 問題2:某人射擊10次,所得環(huán)數(shù)分別是: 7,8,10,7,9,7,8,8,9,7 ;(1)則所得的平均環(huán)數(shù)是多少?(2)若把環(huán)數(shù)看成隨機變量Y,求Y的概率分布列?Y78910P8建構(gòu)定義 初步理解平均環(huán)數(shù)問題1:合理定價 X182436P 問題2: 平 均 環(huán) 數(shù) Y78910P建構(gòu)定義 初步理解2.3.1離散型隨機變量的均值高二數(shù)學(xué) 選修2-31.定義:一般地,若離散型隨機變量X的概率分布為:則稱為隨機變量X的均值(或數(shù)學(xué)期望)。建構(gòu)定義 初步理解它反映了離散型隨機變量取值的平均水平。設(shè)計意圖 從解決生活中熟悉的問題出發(fā),兩式從形式上具有某種相

8、似性,通過比較,總結(jié)規(guī)律,抽象出解決問題的一般方法,進而歸納出離散型隨機變量期望的定義。歸納是一種重要的推理方法,由具體結(jié)論歸納概括出定義能使學(xué)生的感性認識升華到理性認識,從而培養(yǎng)學(xué)生從特殊到一般的認知方法。1、隨機變量的分布列是135P0.50.30.2則E= . 2、隨機變量的分布列是2.447910P0.3ab0.2E=7.5,則a= b= .0.40.1小試牛刀:設(shè)計意圖鞏固定義,熟悉公式,為解決實際問題做鋪墊深入理解 探究新知1、本環(huán)節(jié)需要解決的主要問題: 明確隨機變量的均值與樣本平均值的區(qū)別與聯(lián)系2、具體教學(xué)安排: 學(xué)生探究討論深入理解 探究新知 離散型隨機變量的均值與之前學(xué)習(xí)的樣

9、本平均值到底有什么區(qū)別與聯(lián)系呢?作為顧客,買了1kg糖果要付23元,而顧客買的這1kg糖果的真實價格一定是23元嗎?設(shè)計意圖 通過這一問題的思考,使學(xué)生明確:樣本的平均值是隨著樣本的不同而變化的,因此樣本的平均值是一個隨機變量。而隨機變量的均值是刻畫總體的一種數(shù)字特征,是一個常數(shù)。對于簡單隨機樣本,隨著樣本容量的增加,樣本的平均值會越來越接近于總體的均值。1、本環(huán)節(jié)需要解決的主要問題:讓學(xué)生明確離散型隨機變量的均值在解決實際問題中的作用及解決此類問題的基本思路及步驟2、具體教學(xué)安排:情境1、2改成兩個例題以及例3回歸引例 嘗試應(yīng)用回歸引例 嘗試應(yīng)用例1 、統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)促銷活動

10、可獲利2萬元;商場外促銷活動如不遇下雨可獲利10萬元;如遇下雨則損失4萬元。9月30日氣象預(yù)報國慶節(jié)下雨的概率為40%,商場應(yīng)選擇哪種促銷方式?例2:大四找工作,一個公司年薪3.6萬元,但一定要他,另一個公司有四種可能性,年薪5萬,概率為0.2;年薪4.5萬,概率0.2;年薪3.5萬,概率為0.4;不錄,概率為0.2。同一天面試,該如何抉擇?設(shè)計意圖回扣課前問題,兩道例題與生活密切聯(lián)系,讓學(xué)生感受數(shù)學(xué)在生活及社會各個領(lǐng)域中的廣泛應(yīng)用。生活中蘊涵數(shù)學(xué)知識,數(shù)學(xué)知識又能解決生活中的問題。通過問題的解答樹立學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識。 根據(jù)氣象預(yù)報,某地區(qū)近期有小洪水的概率為0.25

11、,有大洪水的概率為0.01.工地上有一臺大型設(shè)備,遇到大洪水時損失60000元,遇到小洪水損失10000元.為保護設(shè)備,有以下3種方案: 方案1:運走設(shè)備,搬運費為3800元; 方案2:建保護圍墻,建設(shè)費為2000元,但圍墻只能防小洪水; 方案3:不采取任何措施,希望不發(fā)生洪水. 試比較哪一種方案好? 6月份是南方多雨的時節(jié)合作學(xué)習(xí) 深入探究例3:根據(jù)氣象預(yù)報,某地區(qū)近期有小洪水的概率為0.25,有大洪水的概率為0.01,該地區(qū)某工地上有一臺大型設(shè)備,遇到大洪水時要損失60000元,遇到小洪水時要損失10000元。為保護設(shè)備,有以下三種方案,試比較那種較好?解:用x1、x2、x3表示方案1、2

12、、3的損失方案1:運走設(shè)備,搬運費3800元。無論有無洪水方案2:建保護圍墻,建設(shè)費為2000元,但圍墻只能擋住小洪水。有大洪水無大洪水方案3:不采取措施,希望不發(fā)生洪水。有大洪水有小洪水無洪水合作學(xué)習(xí) 深入探究通過以上三個實例的解決,請同學(xué)總結(jié)求離散型隨機變量期望的步驟:學(xué)生通過分組討論,共同解決問題,既培養(yǎng)學(xué)生的合作意識,又使學(xué)生感受到數(shù)學(xué)在我們的生活中無處不在,數(shù)學(xué)來源于生活,又應(yīng)用于生活。設(shè)計意圖小結(jié):實際問題數(shù)學(xué)問題概率問題讀懂題意抽象概括計算數(shù) 字特征 (均值)決策使學(xué)生對本節(jié)課所學(xué)的內(nèi)容有一個整體的認識。歸納小結(jié) 總結(jié)提煉本環(huán)節(jié)要解決的問題:具體安排:引導(dǎo)學(xué)生從知識點,方法以及感

13、受等方面進行總結(jié)。學(xué)生在討論、補充發(fā)言的過程中,回顧本節(jié)課的學(xué)習(xí)內(nèi)容。通過這節(jié)課的學(xué)習(xí)1你都學(xué)到了哪些知識?掌握了哪些方法?2說說你的感受和體會歸納小結(jié) 總結(jié)提煉 通過本堂課的學(xué)習(xí),我們不僅知道了為什么要引入數(shù)學(xué)期望,數(shù)學(xué)期望是什么,它可以用來做什么,同時我們還在得到數(shù)學(xué)期望概念和應(yīng)用過程中體會了歸納、猜想等合情推理,更重要的是我們深刻體會到了數(shù)學(xué)來源于生活,又為生活服務(wù)。歸納小結(jié) 總結(jié)提煉設(shè)計意圖通過師生的共同總結(jié),發(fā)揮了學(xué)生的主體作用,有利于鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力,進一步完成教學(xué)目標。布置作業(yè) 學(xué)以致用必做題:教材68頁A組3,41選做題:教材68頁B組22 在人口密集

14、的廣場上,有一小販拿著一只布袋,站在一邊高聲叫喊:“快過來!快過來!送錢嘍!” 原來,布袋內(nèi)裝4個紅球與4個白球,除顏色不同外,8個球完全一樣,每次從袋中摸4個球,輸贏的規(guī)則為: 你動心了嗎? 課后思考4個全紅3紅1白2紅2白1紅3白4個全白贏100元贏50元輸100元贏50元贏100元設(shè)計意圖 作業(yè)是課本習(xí)題,通過它來反饋知識掌握效果,鞏固所學(xué)知識,強化基本技能的訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì)。選做題是給學(xué)有余力的學(xué)生留出自由發(fā)展的空間,符合因材施教的新課標的思想。為了讓數(shù)學(xué)應(yīng)用意識延伸到課外,我給同學(xué)們留了課后思考,這給學(xué)生的思維留出了一定的空間。教學(xué)特點及效果 教學(xué)特點(1)注重情境

15、創(chuàng)設(shè),聯(lián)系生活實際,關(guān)注身邊數(shù)學(xué)。 (2)期望概念的教學(xué)是本節(jié)課的重點,本節(jié)突出概念的建構(gòu),通過實例,引導(dǎo)學(xué)生分析,并歸納出定義;通過練習(xí),層層遞進,加深學(xué)生對概念的理解,幫助學(xué)生把握概念的本質(zhì)特征,使學(xué)生的思維活起來;通過例題分析,讓學(xué)生體會學(xué)習(xí)期望的意義。 (3)本節(jié)課以現(xiàn)實問題引入,以生活中的實例結(jié)束,讓學(xué)生認識到數(shù)學(xué)源于生活,又應(yīng)用于生活,生活中處處有數(shù)學(xué)。2.效果分析 本節(jié)課在教師的引導(dǎo)下,學(xué)生積極參與、自主探究明確了隨機變量的均值的含義及其在實際問題中的應(yīng)用,將特殊到一般的數(shù)學(xué)思想方法滲透于知識的探索發(fā)現(xiàn)之中,在學(xué)生原有的知識體系上,通過類比逐步引導(dǎo)學(xué)生,發(fā)現(xiàn)知識的內(nèi)在聯(lián)系,達到了

16、本課教學(xué)的目標教學(xué)特點及效果 敬請各位專家批評指正,謝謝!教學(xué)片段(一)創(chuàng)設(shè)情境,引入新課情境1:統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)促銷活動可獲利2萬元;商場外促銷活動如不遇下雨可獲利10萬元;如遇下雨則損失4萬元。9月30日氣象預(yù)報國慶節(jié)下雨的概率為40%,商場應(yīng)選擇哪種促銷方式?情境2:大四找工作,一個公司年薪3.6萬元,但一定要他,另一個公司有四種可能性,年薪5萬,概率為0.2;年薪4.5萬,概率0.2;年薪3.5萬,概率為0.4;不錄,概率為0.2。同一天面試,該如何抉擇?情境2:大四找工作,一個公司年薪3.6萬元,但一定要他,另一個公司有四種可能性,年薪5萬,概率為0.2;年薪4.5萬,

17、概率0.2;年薪3.5萬,概率為0.4;不錄,概率為0.2。同一天面試,該如何抉擇?情境1:統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)促銷活動可獲利2萬元;商場外促銷活動如不遇下雨可獲利10萬元;如遇下雨則損失4萬元。9月30日氣象預(yù)報國慶節(jié)下雨的概率為40%,商場應(yīng)選擇哪種促銷方式?解:因為商場內(nèi)的促銷活動可獲利2萬元設(shè)商場外的促銷活動可獲利萬元,則的分布列P1040.60.4情境1情境2解:一個公司的年薪3.6萬元設(shè)另一個公司的年薪萬元,則的分布列P54.50.20.23.50.40.20需要新知識認知沖突2.3.1離散型隨機變量的均值(二)建構(gòu)定義 初步理解 問題1: 某商場要將單價分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,如何對混合糖果定價才合理?權(quán)數(shù)加權(quán)平均思考:(1)你能寫出X的分布列嗎?(2)你能利用這個分布列計算出每1kg混合糖果的合理定價嗎?若在混合糖果中,任取一顆糖果,所取糖果的價格設(shè)為X,合理定價這一問題已經(jīng)解決,但它和我們之前學(xué)習(xí)的分布列有什么聯(lián)系呢?(二)建構(gòu)定義 初步理解 問題:合理定價 X182436P(二)建構(gòu)定義 初步理解 1.定義:一般地,若離散型隨機變量X的概率分布為:則稱為隨機變量X的均值或數(shù)學(xué)期望。它反映了離散型隨機變量取值的平均水平。(二)建構(gòu)定義 初步理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論