2022屆山西省太原市第十二高三第一次模擬考試數(shù)學試卷含解析_第1頁
2022屆山西省太原市第十二高三第一次模擬考試數(shù)學試卷含解析_第2頁
2022屆山西省太原市第十二高三第一次模擬考試數(shù)學試卷含解析_第3頁
2022屆山西省太原市第十二高三第一次模擬考試數(shù)學試卷含解析_第4頁
2022屆山西省太原市第十二高三第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設,隨機變量的分布列是01則當在內(nèi)增大時,( )A減小,減小B減小,增大C增大,減小D增大,增大2已知底面是等腰直

2、角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則( )APA,PB,PC兩兩垂直B三棱錐P-ABC的體積為CD三棱錐P-ABC的側面積為3已知,則下列說法中正確的是( )A是假命題B是真命題C是真命題D是假命題4已知冪函數(shù)的圖象過點,且,則,的大小關系為( )ABCD5某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有( )A36種B44種C48種D54種6若函數(shù)在處有極值,則在區(qū)間上的最大值為( )AB2C1D37設為虛數(shù)單位,為復數(shù),若為實數(shù),則( )ABCD

3、8已知,則的最小值為( )ABCD9已知函數(shù),的零點分別為,則( )ABCD10已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是( )A圓,但要去掉兩個點B橢圓,但要去掉兩個點C雙曲線,但要去掉兩個點D拋物線,但要去掉兩個點11已知下列命題:“”的否定是“”;已知為兩個命題,若“”為假命題,則“”為真命題;“”是“”的充分不必要條件;“若,則且”的逆否命題為真命題.其中真命題的序號為( )ABCD12在復平面內(nèi),復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于( )A第一象限B第二象限C第三象限D第四象限二、填空題:本題共4小題,每小題5分,共20分。13已知雙曲線的一條漸近線為,

4、則焦點到這條漸近線的距離為_14已知函數(shù),若對于任意正實數(shù),均存在以為三邊邊長的三角形,則實數(shù)k的取值范圍是_.15曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=_。16已知定義在上的函數(shù)的圖象關于點對稱,若函數(shù)圖象與函數(shù)圖象的交點為,則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.18(12分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置

5、;若不存在,請說明理由19(12分)在中,角、所對的邊分別為、,且.(1)求角的大??;(2)若,的面積為,求及的值.20(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.21(12分)在正三棱柱ABCA1B1C1中,已知AB1,AA12,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值22(10分)如圖在四邊形中,為中點,.(1)求;(2)若,求面積的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每

6、小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】,判斷其在內(nèi)的單調(diào)性即可【詳解】解:根據(jù)題意在內(nèi)遞增,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題2C【解析】根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,、不可能垂直,即不可能兩兩垂直,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中

7、檔題.3D【解析】舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案【詳解】當時,故命題為假命題;記f(x)exx的導數(shù)為f(x)ex,易知f(x)exx(,0)上遞減,在(0,)上遞增,f(x)f(0)0,即,故命題為真命題;是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質,是基礎題4A【解析】根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質,以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.5B【解析】分三種情況,任務A排在第一位時,E排

8、在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有; 如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執(zhí)行方案共有種【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題6B【

9、解析】根據(jù)極值點處的導數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導數(shù)極值的性質以及利用導數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題7B【解析】可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題8B【解析】 ,選B9C【解析】轉化函數(shù),的零點為與,的交點,數(shù)形結合,即得解.【詳解】函

10、數(shù),的零點,即為與,的交點,作出與,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結合法研究函數(shù)的零點,考查了學生轉化劃歸,數(shù)形結合的能力,屬于中檔題.10A【解析】根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質,軌跡問題,屬于中檔題.11B【解析】由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必

11、要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎12D【解析】將復數(shù)化簡得,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內(nèi)點的對應,難度容易.二、填空題:本題共4小題,每小題5分,共20分。132.【解析】由雙曲線的一條漸近線為,解得求出雙曲線的右焦點,利用點到直線的距離公式求解即可【詳解】雙曲線的一條漸近線為 解得: 雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結果:【點睛

12、】本題考查了雙曲線和的標準方程及其性質,涉及到點到直線距離公式的考查,屬于基礎題14【解析】根據(jù)三角形三邊關系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數(shù),都存在以為三邊長的三角形,故對任意的恒成立,令,則,當,即時,該函數(shù)在上單調(diào)遞減,則;當,即時,當,即時,該函數(shù)在上單調(diào)遞增,則,所以,當時,因為,所以,解得;當時,滿足條件;當時,且,所以,解得,綜上,故答案為:【點睛】本題考查參數(shù)范圍,考

13、查三角形的構成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉化思想.15或1【解析】利用導數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值【詳解】的導數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。164038.【解析】由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點關于點對稱,則,,即,得解【詳解】由知:得函數(shù)的圖象關于點對稱又函數(shù)的圖象關于點對稱則函數(shù)圖象與函數(shù)圖象的交點關于點對稱則故,即本題正確結果:【點睛】本

14、題考查利用函數(shù)圖象的對稱性來求值的問題,關鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)對范圍分類整理得:,分類解不等式即可(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解【詳解】當時,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題18(1)證明見解析 (2)存在,為

15、中點【解析】(1)證明面,即證明平面平面;(2)以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系利用向量方法得,解得,所以為中點【詳解】(1)由于為中點,又,故,所以為直角三角形且,即又因為面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四邊形為矩形,則兩兩垂直以為坐標原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標系則,設,則,設平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設平面與平面所成角為,則由題意可得,解得,所以點為中點【點睛】本題主要考查空間幾何位置關系的證明,考查空間二面角的應用,意在考查學生對這些知識的理

16、解掌握水平.19(1)(2);【解析】(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,或(舍),.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.20(1)(2)【解析】(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當?shù)拿娣e取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據(jù)余弦定理求出邊,進而得到的周長【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為

17、的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力和數(shù)學運算能力21(1).(2).【解析】(1)先根據(jù)空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答 (1) 因為AB1,AA12,則F(0,0,0),A,C,B,E,所以(1,0,0),記異面直線AC和BE所成角為,則cos|cos|,所以異面直線AC和BE所成角的余弦值為.(2) 設平面BFC1的法向量為= (x1,y1,z1)因為,則取x14,得平面BFC1的一個法向量為(4,0,1)設平面BCC1的法向量為(x2,y2,z2)因為,(0,0,2),則取x2 得平面BCC1的一個法向量為(,1,0),所以cos =根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論