說明40.流體力學(xué)numerical methods for heat,年_peakchina l_第1頁
說明40.流體力學(xué)numerical methods for heat,年_peakchina l_第2頁
說明40.流體力學(xué)numerical methods for heat,年_peakchina l_第3頁
說明40.流體力學(xué)numerical methods for heat,年_peakchina l_第4頁
說明40.流體力學(xué)numerical methods for heat,年_peakchina l_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Lecture 5: A First Look at the Diffusion EquationLast TimeWe completed an overview of the numerical discretization and solution process Domain discretizationDiscretization of governing equationsSolution of linear algebraic setProperties of discretization and path to solutionAccuracy, consistency, co

2、nvergence, stabilityThis TimeWe willApply the finite volume scheme to the steady diffusion equation on Cartesian structured meshesExamine the properties of the resulting discretizationDescribe how to discretize boundary conditions Consider steady diffusion with a source term: Here Integrate over con

3、trol volume to yield2D Steady Diffusion2D Steady DiffusionApply divergence theorem to yield Writing integral over control volume:Compactly: Discrete Flux BalanceDiscrete Flux Balance (contd)Area vectors given by:Fluxes given byDiscretizationAssume varies linearly between cell centroidsNote:Symmetry

4、of (P, E ) and (P,W) in flux expressionOpposite signs on (P,E) and (P,W) termsSource LinearizationSource term must be linearized as:Assume SP 0More on this later!Final Discrete EquationPNSEWCommentsDiscrete equation reflects balance of flux*area with generation inside control volumeAs in 1-D case, w

5、e need fluxes at cell facesThese are written in terms of cell-centroid values using profile assumptions.Comments (contd)Formulation is conservative: Discrete equation was derived by enforcing conservation. Fluxes balance source term regardless of mesh densityFor a structured mesh, each point P is co

6、upled to its four nearest neighbors. Corner points do not enter the formulation.Properties of DiscretizationaP, anb have same sign: This implies that if neighbor goes up, P also goes upIf S=0:Thus is bounded by neighbor values, in keeping with properties of elliptic partial differential equationsPro

7、perties of Discretization (contd)What about Scarborough Criterion ?Satisfied in the equalityWhat about this?Boundary ConditionsFlux BalanceDifferent boundary conditions require different representations of JbDirichlet BCsDirichlet boundary condition: b = givenPut in the requisite flux into the near-

8、boundary cell balanceDirichlet BCs (contd)For near-boundary cells:Satisfies Scarborough Criterion !Also, P bounded by interior neighbors and boundary value in the absence of source termsNeumann BCsNeumann boundary conditions : qb givenReplace Jb in cell balance with given fluxNeumann BCs (contd)For

9、Neumann boundariesSo inequality constraint in Scarborough criterion is not satisfied Also, P is not bounded by interior neighbors and boundary value even in the absence of source terms this is is fine because of the added flux at the boundaryBoundary Values and FluxesOnce we solve for the interior v

10、alues of , we can recover the boundary value of the flux for Dirichlet boundary conditions usingSimilarly, for Neumann boundary conditions, we can find the boundary value of usingClosureIn this lecture we Described the discretization procedure for the diffusion equation on Cartesian meshesSaw that the resulting discretization process preserves the properties of elliptic equationsSince we get diagonal dominance with Dirichlet bc, the discretiza

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論