版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知.給出下列判斷:若,且,則;存在使得的圖象向右平移個(gè)單位長(zhǎng)度后得到的圖象關(guān)于軸對(duì)稱;若在上恰有7個(gè)零點(diǎn),則的取值范圍為;若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為( )
2、A1B2C3D42一個(gè)四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個(gè)四棱錐中最最長(zhǎng)棱的長(zhǎng)度是( )ABCD3兩圓和相外切,且,則的最大值為( )AB9CD14已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號(hào)有( )ABCD5已知分別為雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為( )AB4C2D6函數(shù)(, , )的部分圖象如圖所示,則的值分別為( )A2,0B2, C2, D2, 7設(shè),則( )ABCD8設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令有以下6個(gè)論斷:是奇函數(shù)時(shí),是
3、奇函數(shù);是偶函數(shù)時(shí),是奇函數(shù);是偶函數(shù)時(shí),是偶函數(shù);是奇函數(shù)時(shí),是偶函數(shù)是偶函數(shù);對(duì)任意的實(shí)數(shù),那么正確論斷的編號(hào)是( )ABCD9數(shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬(wàn)物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:曲線C經(jīng)過(guò)5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過(guò)2;曲線C圍成區(qū)域的面積大于;方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是( )ABCD10存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過(guò)點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過(guò)點(diǎn),則橢圓離心率的取值范圍是( )ABCD11已知函數(shù),若
4、曲線上始終存在兩點(diǎn),使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為( )ABCD12已知復(fù)數(shù)z=2i1-i,則z的共軛復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20分。13成都市某次高三統(tǒng)考,成績(jī)X經(jīng)統(tǒng)計(jì)分析,近似服從正態(tài)分布,且,若該市有人參考,則估計(jì)成都市該次統(tǒng)考中成績(jī)大于分的人數(shù)為_14已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則_15函數(shù)的值域?yàn)開.16已知復(fù)數(shù)z112i,z2a+2i(其中i是虛數(shù)單位,aR),若z1z2是純虛數(shù),則a的值為_三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已
5、知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.18(12分)已知?jiǎng)訄A恒過(guò)點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問(wèn):是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說(shuō)明理由.19(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過(guò)且傾斜角為的直線與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.20(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成在此區(qū)域內(nèi)
6、原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn)已知長(zhǎng)為40米,設(shè)為(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值21(12分)如圖,在四棱錐中,底面是直角梯形且,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.22(10分)在平面四邊形(圖)中,與均為直角三角形且有公共斜邊,設(shè),將沿折起,構(gòu)成如圖所示的三棱錐,且使=. (1)求證:平面平面;(2)求二面角的余弦值.參考答案一、
7、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】對(duì)函數(shù)化簡(jiǎn)可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性及平移變換,對(duì)四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對(duì)于,因?yàn)?,所以,即,故錯(cuò)誤;對(duì)于,函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到的函數(shù)為,其圖象關(guān)于軸對(duì)稱,則,解得,故對(duì)任意整數(shù),所以錯(cuò)誤;對(duì)于,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故正確;對(duì)于,因?yàn)?,且,所以,解得,又,所以,故正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移
8、變換、最值、周期性、單調(diào)性、零點(diǎn)、對(duì)稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.2A【解析】作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計(jì)算每一條棱長(zhǎng)即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,平面,且,這個(gè)四棱錐中最長(zhǎng)棱的長(zhǎng)度是故選【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計(jì)算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題3A【解析】由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.4D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距
9、離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.5A【解析】由已知得,由已知比值得,再利用雙曲線的定義可用表示出,用勾股定理得出的等式,從而得離心率【詳解】.又,可令,則.設(shè),得,即,解得,,由得,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來(lái),從而再由勾股定理建立的
10、關(guān)系6D【解析】由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過(guò)點(diǎn),求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過(guò)點(diǎn),則故選【點(diǎn)睛】本題主要考查的是的圖像的運(yùn)用,在解答此類題目時(shí)一定要挖掘圖像中的條件,計(jì)算三角函數(shù)的周期、最值,代入已知點(diǎn)坐標(biāo)求出結(jié)果7D【解析】結(jié)合指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,可判斷出,即可選出答案.【詳解】由,即,又,即,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.8A【解析】根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí)
11、,則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,此時(shí),故錯(cuò)誤;故正確.故選:A【點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.9B【解析】利用基本不等式得,可判斷;和聯(lián)立解得可判斷;由圖可判斷.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),則和都錯(cuò)誤;由,得正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.10D【解析】根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^(guò)點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,
12、所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問(wèn)題,屬于基礎(chǔ)題.11D【解析】根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),().對(duì)分成三類,利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.12C【解
13、析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對(duì)應(yīng)的點(diǎn),得到答案詳解:由題意,復(fù)數(shù)z=2i1-i=2i1+i1-i1+i=-1+i,則z=-1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力二、填空題:本題共4小題,每小題5分,共20分。13.【解析】根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計(jì)成都市該次統(tǒng)考中成績(jī)大于分的人數(shù)為故答案為:【點(diǎn)睛】此題考查正態(tài)分布密度
14、曲線性質(zhì)的理解辨析,根據(jù)曲線的對(duì)稱性求解概率,根據(jù)總?cè)藬?shù)求解成績(jī)大于114的人數(shù).14-2【解析】先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,直線AB的方程是:,則,故答案為.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題15【解析】利用配方法化簡(jiǎn)式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)?故答案為:【點(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問(wèn)題,屬基礎(chǔ)題。16-1【解析】由題意
15、,令即可得解.【詳解】z112i,z2a+2i,又z1z2是純虛數(shù),解得:a1故答案為:1【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】(1)對(duì)a分三種情況討論求出函數(shù)的單調(diào)性;(2)對(duì)a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)
16、時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時(shí),成立.當(dāng)時(shí),.當(dāng)時(shí),即.綜上.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18(1);(2)存在,.【解析】(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,
17、.圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),則,.因?yàn)辄c(diǎn),在直線上,所以,所以,所以.故存在,使得.【點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問(wèn)題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.19(1);(2)【解析】(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進(jìn)行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因?yàn)?,所以的普通方程為,又,的極坐標(biāo)方程為,的方程即為,對(duì)應(yīng)極坐標(biāo)方程為
18、.(2)由己知設(shè),則,所以,又,當(dāng),即時(shí),取得最小值;當(dāng),即時(shí),取得最大值.所以,的取值范圍為.【點(diǎn)睛】本題主要考查了直角坐標(biāo)方程,參數(shù)方程與極坐標(biāo)方程的互化,三角函數(shù)的值域求解等知識(shí),考查了學(xué)生的運(yùn)算求解能力.20(1),(2)【解析】(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過(guò)求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連由條件得在三角形中,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以所以四邊形的周長(zhǎng)為,(2)設(shè)四邊形的面積為,則,所以,令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為【點(diǎn)睛】本題考查余弦定理、直線與
19、圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.21(1);(2).【解析】(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;(2)求出,利用計(jì)算即可.【詳解】(1)分別取的中點(diǎn)為,連結(jié).因?yàn)?,所?因?yàn)?,所?因?yàn)閭?cè)面為等邊三角形,所以又因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以兩兩垂? 以為空間坐標(biāo)系的原點(diǎn),分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,因?yàn)?,則,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 強(qiáng)化免疫日宣傳
- 教學(xué)教務(wù)年終總結(jié)匯報(bào)
- 四川省眉山市東坡區(qū)眉山育英實(shí)驗(yàn)學(xué)校2024-2025學(xué)年高一上學(xué)期1月期末地理試題( 含答案)
- 電氣物資知識(shí)培訓(xùn)課件
- 2025年度智能安防SAAS解決方案銷售服務(wù)協(xié)議2篇
- 醫(yī)學(xué)基礎(chǔ)知識(shí)培訓(xùn)課件
- 河北省張家口市萬(wàn)全區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期1月期末考試生物試卷(含答案)
- 遼寧省葫蘆島市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)人教版課后作業(yè)(下學(xué)期)試卷及答案
- 2024年事業(yè)單位教師招聘言語(yǔ)理解與表達(dá)題庫(kù)附參考答案【突破訓(xùn)練】
- 貴州盛華職業(yè)學(xué)院《個(gè)人理財(cái)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 3360機(jī)dp c2255維修手冊(cè)中文版06chapgeneral
- 北京生命科技研究院有限公司招聘考試真題2022
- (42)-妊娠合并內(nèi)外科疾病
- 骨科手術(shù)后患者營(yíng)養(yǎng)情況及營(yíng)養(yǎng)不良的原因分析,骨傷科論文
- 糕點(diǎn)生產(chǎn)檢驗(yàn)記錄表
- GB/T 1040.3-2006塑料拉伸性能的測(cè)定第3部分:薄膜和薄片的試驗(yàn)條件
- 河北省房屋建筑和市政基礎(chǔ)設(shè)施施工圖設(shè)計(jì)文件審查要點(diǎn)(版)
- 醫(yī)院院長(zhǎng)年終工作總結(jié)報(bào)告精編ppt
- 綠化養(yǎng)護(hù)重點(diǎn)難點(diǎn)分析及解決措施
- “三排查三清零”回頭看問(wèn)題整改臺(tái)賬
- 造價(jià)咨詢結(jié)算審核服務(wù)方案
評(píng)論
0/150
提交評(píng)論