2022屆山東省萊陽市中考數(shù)學(xué)五模試卷含解析_第1頁
2022屆山東省萊陽市中考數(shù)學(xué)五模試卷含解析_第2頁
2022屆山東省萊陽市中考數(shù)學(xué)五模試卷含解析_第3頁
2022屆山東省萊陽市中考數(shù)學(xué)五模試卷含解析_第4頁
2022屆山東省萊陽市中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022中考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分在每小題給出的四個選項中,只有一項是符合題目要求的)1某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是( )班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)

2、班9595.5938.4A八(2)班的總分高于八(1)班B八(2)班的成績比八(1)班穩(wěn)定C兩個班的最高分在八(2)班D八(2)班的成績集中在中上游2下列函數(shù)中,y隨著x的增大而減小的是( )Ay=3xBy=3xCD3在-,0,2這四個數(shù)中,最小的數(shù)是( )ABC0D24如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A7B8C9D105如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A60cm2B50cm2C40cm2D30cm26如圖,過點A(4

3、,5)分別作x軸、y軸的平行線,交直線y=x+6于B、C兩點,若函數(shù)y=(x0)的圖象ABC的邊有公共點,則k的取值范圍是()A5k20B8k20C5k8D9k207如圖,在中,點D、E、F分別在邊、上,且,下列四種說法: 四邊形是平行四邊形;如果,那么四邊形是矩形;如果平分,那么四邊形是菱形;如果且,那么四邊形是菱形. 其中,正確的有( ) 個A1B2C3D48如圖,將ABC沿BC邊上的中線AD平移到ABC的位置,已知ABC的面積為9,陰影部分三角形的面積為1若AA=1,則AD等于()A2B3CD9某中學(xué)籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊員的

4、年齡,下列說法錯誤的是( )A眾數(shù)是14歲B極差是3歲C中位數(shù)是14.5歲D平均數(shù)是14.8歲10如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在O上,若過點M作O的一條切線MK,切點為K,則MK()A3B2C5D11已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是( )A平均數(shù)是9B中位數(shù)是9C眾數(shù)是5D極差是512如圖,在正五邊形ABCDE中,連接BE,則ABE的度數(shù)為( )A30B36C54D72二、填空題:(本大題共6個小題,每小題4分,共24分)13拋物線y=(x3)2+1的頂點坐標(biāo)是_14如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別

5、交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正確的是_(填序號)15某風(fēng)扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_16如圖,在直角坐標(biāo)系中,點A(2,0),點B (0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PCx軸,垂足為C,把ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與ABP相似,則所有滿足此條件的點P的坐標(biāo)為_17矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足PBEDBC,若APD是等腰

6、三角形,則PE的長為數(shù)_.18計算:2cos60+(5)=_.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟19(6分)某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價檢測小組隨機抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整)請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是;在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨立思考”的學(xué)生約有多少人?20(6分)如圖,直

7、線y=x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經(jīng)過點B、C,與x軸的另一個交點為點A(點A在點B的左側(cè)),對稱軸為l1,頂點為D(1)求拋物線y=x2+bx+c的解析式(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2x11結(jié)合函數(shù)的圖象,求x3的取值范圍;若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值21(6分)在“打造青山綠山,建設(shè)美麗中國”的活動中,某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?2輛A、

8、B兩種型號客車作為交通工具,下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù).(1)設(shè)租用A型號客車x輛,租車總費用為y元,求y與x的函數(shù)解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?22(8分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和1B 布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字1,1和2小明從A布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確

9、定點Q的一個坐標(biāo)為(x,y)(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標(biāo);(1)求點Q落在直線y=x1上的概率23(8分)某養(yǎng)雞場有2500只雞準(zhǔn)備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖和圖.請根據(jù)相關(guān)信息,解答下列問題:()圖中的值為 ;()求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);() 根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?24(10分)某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行

10、于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;25(10分)拋物線y=ax2+bx+3(a0)經(jīng)過點A(1,0),B(,0),且與y軸相交于點C(1)求這條拋物線的表達式;(2)求ACB的度數(shù);(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCE與AOC相似時,求點D的坐標(biāo)26(12分)如圖,O的直徑AD長為6,AB是弦,CDAB,A=30,且CD=(1)求C的度數(shù);(2)求證:BC是O的切線27(12分)已知:如圖1在RtABC中,C=90,AC=8cm,BC=6cm,點P由點B出發(fā)沿

11、BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設(shè)運動的時間為t秒(0t5),解答下列問題:(1)當(dāng)為t何值時,PQBC;(2)設(shè)AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQPC為菱形?若存在,求出此時t的值;若不存在,請說明理由參考答案一、選擇題(本大題共12個小題,每小題4分,共48分在每小題給出的四個選項中,只有一項是符合題目要求的)1、C【解析】直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、

12、眾數(shù)得出答案【詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;故選C【點睛】考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵2、B【解析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項錯誤;B、y=3x,y隨著x的增大而減小,正確;C、,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D、,每

13、個象限內(nèi),y隨著x的增大而增大,故此選項錯誤;故選B考點:反比例函數(shù)的性質(zhì);正比例函數(shù)的性質(zhì)3、D【解析】根據(jù)正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小比較即可.【詳解】在,0,1這四個數(shù)中,10,故最小的數(shù)為:1故選D【點睛】本題考查了實數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負數(shù)的大小比較.4、C【解析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C【點睛】考查了三視圖判定幾何體,關(guān)鍵是對三視圖靈活運用,體

14、現(xiàn)了對空間想象能力的考查.5、D【解析】標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得B=AED,然后求出ADE和EFB相似,根據(jù)相似三角形對應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解【詳解】解:如圖,正方形的邊DECF,B=AED,ADE=EFB=90,ADEEFB,設(shè)BF=3a,則EF=5a,BC=3a+5a=8a,AC=8a=a,在RtABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=a8a-(5

15、a)1,=a1-15a1,=a1,=,=30cm1故選D【點睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.6、A【解析】若反比例函數(shù)與三角形交于A(4,5),則k=20;若反比例函數(shù)與三角形交于C(4,2),則k=8;若反比例函數(shù)與三角形交于B(1,5),則k=5.故.故選A.7、D【解析】先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DECA,DFBA,得出AEDF為平行四邊形,得出正確;當(dāng)BAC=90,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出正確;若AD平分BAC,得到一對

16、角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得EAD=EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出正確;由AB=AC,ADBC,根據(jù)等腰三角形的三線合一可得AD平分BAC,同理可得四邊形AEDF是菱形,正確,進而得到正確說法的個數(shù)【詳解】解:DECA,DFBA,四邊形AEDF是平行四邊形,選項正確;若BAC=90,平行四邊形AEDF為矩形,選項正確;若AD平分BAC,EAD=FAD,又DECA,EDA=FAD,EAD=EDA,AE=DE,平行四邊形AEDF為菱形,選項正確;若AB=AC,ADBC,AD平分BAC,同理可得平行四邊形AEDF為菱形

17、,選項正確,則其中正確的個數(shù)有4個故選D【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵8、A【解析】分析:由SABC=9、SAEF=1且AD為BC邊的中線知SADE=SAEF=2,SABD=SABC=,根據(jù)DAEDAB知,據(jù)此求解可得詳解:如圖,SABC=9、SAEF=1,且AD為BC邊的中線,SADE=SAEF=2,SABD=SABC=,將ABC沿BC邊上的中線AD平移得到ABC,AEAB,DAEDAB,則,即,解得AD=2或AD=-(舍),故選A點睛:本題

18、主要平移的性質(zhì),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識點9、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:1613=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+145+154+162)1214.5,故選項D錯誤,符合題意故選D“點睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵10、B【解析】以O(shè)M為直徑作圓交O于K,利用圓周角定理得到MKO90從而得到KMOK,進而利用

19、勾股定理求解【詳解】如圖所示:MK.故選:B【點睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系11、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)5=9,故選項A正確;重新排列為5,5,9,12,14,中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,眾數(shù)是5,故選項C正確;極差為:145=9,故選項D錯誤故選D12、B【解析】在等腰三角形ABE中,求出A的度數(shù)即可解決問題【詳解】解:在正五邊形ABCDE中,A=(5-2)180=108又知ABE是等腰三角形, AB=AE,A

20、BE=(180-108)=36故選B【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,解答本題的關(guān)鍵是求出正五邊形的內(nèi)角,此題基礎(chǔ)題,比較簡單二、填空題:(本大題共6個小題,每小題4分,共24分)13、 (3,1) 【解析】分析:已知拋物線解析式為頂點式,可直接寫出頂點坐標(biāo)詳解:y=(x3)2+1為拋物線的頂點式,根據(jù)頂點式的坐標(biāo)特點可知,拋物線的頂點坐標(biāo)為(3,1)故答案為(3,1)點睛:主要考查了拋物線頂點式的運用14、【解析】由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結(jié)論【詳解】BPC是等邊三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A

21、=ADC=BCD=90ABE=DCF=30,BE=2AE;故正確;PC=CD,PCD=30,PDC=75,F(xiàn)DP=15,DBA=45,PBD=15,F(xiàn)DP=PBD,DFP=BPC=60,DFPBPH;故正確;FDP=PBD=15,ADB=45,PDB=30,而DFP=60,PFDPDB,PFD與PDB不會相似;故錯誤;PDH=PCD=30,DPH=DPC,DPHCPD,DP2=PHPC,故正確;故答案是:【點睛】本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理15、1.571【解析】科學(xué)記數(shù)法的表示形式為a10n的形式,其中1|a|10,n

22、為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當(dāng)原數(shù)絕對值1時,n是正數(shù);當(dāng)原數(shù)的絕對值1時,n是負數(shù)【詳解】將1570000用科學(xué)記數(shù)法表示為1.571故答案為1.571【點睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為a10n的形式,其中1|a|10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值16、【解析】點A(2,0),點B (0,1),OA=2,OB=1, .lAB,PACOAB=90.OBA+OAB=90,OBA=PAC.AOB=ACP,ABOPAC, .設(shè)AC=m,PC=2m, .當(dāng)點P在x軸的上方時,由 得, , , ,P

23、C=1, , 由 得, , m2,AC=2,PC=4,OC2+2=4,P(4,4).當(dāng)點P在x軸的下方時,由 得, , , ,PC=1, , 由 得, , m2,AC=2,PC=4,OC2-2=0,P(0,4).所以P點坐標(biāo)為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質(zhì),平面直角坐標(biāo)系點的坐標(biāo)及分類討論的思想.在利用相似三角形的性質(zhì)列比例式時,要找好對應(yīng)邊,如果對應(yīng)邊不確定,要分類討論.因點P在x軸上方和下方得到的結(jié)果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!17、3或1.2【解析】【分析】由PBEDBC,可得PBE=DBC,繼而可確定點P在BD上,

24、然后再根據(jù)APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】四邊形ABCD是矩形,BAD=C=90,CD=AB=6,BD=10,PBEDBC,PBE=DBC,點P在BD上,如圖1,當(dāng)DP=DA=8時,BP=2,PBEDBC,PE:CD=PB:DB=2:10,PE:6=2:10,PE=1.2; 如圖2,當(dāng)AP=DP時,此時P為BD中點,PBEDBC,PE:CD=PB:DB=1:2,PE:6=1:2,PE=3; 綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點P在線段BD上是解題的關(guān)鍵.18、1

25、【解析】解:原式=12+1=1故答案為1三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟19、 (1)560;(2)54;(3)補圖見解析;(4)18000人【解析】(1)本次調(diào)查的樣本容量為22440%=560(人);(2)“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)是:36084560=54; (3)“講解題目”的人數(shù)是:56084168224=84(人)(4)60000=18000(人),答:在課堂中能“獨立思考”的學(xué)生約有18000人.20、(2)y=x24x+3;(2)2x34,m的值為或2【解析】(2)由直線y=x+3分別與x軸、y交于點B、C求得點B、C的

26、坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)先求得拋物線的頂點坐標(biāo)為D(2,2),當(dāng)直線l2經(jīng)過點D時求得m=2;當(dāng)直線l2經(jīng)過點C時求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分當(dāng)直線l2在x軸的下方時,點Q在點P、N之間和當(dāng)直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c得:,解得 y=x24x+3;(2)直線l2平行于x軸,y2=y2=y3=m,如圖,y=

27、x24x+3=(x2)22,頂點為D(2,2),當(dāng)直線l2經(jīng)過點D時,m=2;當(dāng)直線l2經(jīng)過點C時,m=3x2x22,2y33,即2x3+33,得2x34,如圖,當(dāng)直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x軸,即PQx軸,點P、Q關(guān)于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,2x2=x22,即x2=4x2,x3=3x24,將點Q(x2,y2)的坐標(biāo)代入y=x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x

28、2=(3x24)即 x22x24=2,解得x2=,(負值已舍去),m=()24+3=如圖,當(dāng)直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ由上可得點P、Q關(guān)于直線l2對稱,點N在拋物線的對稱軸l2:x=2,又點N在直線y=x+3上,y3=2+3=2,即m=2故m的值為或2【點睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點、線段的中點及分類討論思想等知識在(2)中注意待定系數(shù)法的應(yīng)用;在(2)注意利用數(shù)形結(jié)合思想;在(2)注意分情況討論本題考查知識點較多,綜合性較強,難度較大21、(1)y=1

29、00 x+17360;(2)3種方案:A型車21輛,B型車41輛最省錢.【解析】(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式即可;(2)列出不等式,求出自變量x的取值范圍,利用函數(shù)的性質(zhì)即可解決問題【詳解】(1)由題意:y=380 x+280(62-x)=100 x+17360,30 x+20(62-x)1441,x20.1,又x為整數(shù),x的取值范圍為21x62的整數(shù);(2)由題意100 x+1736019720,x23.6,21x23,共有3種租車方案,x=21時,y有最小值=1即租租A型車21輛,B型車41輛最省錢【點睛】本題考查一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等知識,

30、解題的關(guān)鍵是理解題意,學(xué)會利用函數(shù)的性質(zhì)解決最值問題22、 (1)見解析;(1) 【解析】試題分析:先用列表法寫出點Q的所有可能坐標(biāo),再根據(jù)概率公式求解即可.(1)由題意得11-1(1,-1)(1,-1)-1(1,-1)(1,-1)-2(1,-2)(1,-2)(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=x1上)=.考點:概率公式點評:解題的關(guān)鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.23、()28. ()平均數(shù)是1.52. 眾數(shù)為1.8. 中位數(shù)為1.5. ()200只.【解析】分析:()用整體1減去所有已知的百分比即可求出m的值;()根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)

31、的定義計算即可;()用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:()m%=1-22%-10%-8%-32%=28%.故m=28;()觀察條形統(tǒng)計圖,這組數(shù)據(jù)的平均數(shù)是1.52.在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,這組數(shù)據(jù)的眾數(shù)為1.8.將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是1.5,有,這組數(shù)據(jù)的中位數(shù)為1.5.()在所抽取的樣本中,質(zhì)量為的數(shù)量占.由樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的數(shù)量約占.有.這2500只雞中,質(zhì)量為的約有200只點睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,

32、位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù)24、(1)2(2)當(dāng)x=4時,y最小=88平方米【解析】(1)根據(jù)題意得方程解即可;(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據(jù)二次函數(shù)的性質(zhì)求解即可.解: (1)苗圃園與墻平行的一邊長為(312x)米依題意可列方程x(312x)72,即x215x361 解得x13(舍去),x22 (2)依題意,得8312x3解得6x4面積Sx(312x)2(x)2(6x4)當(dāng)x時,S有最大值,S最大; 當(dāng)x4時,S有最小值,S最小4(3122)88 “點睛”此題考查了二次函數(shù)、一元二次不等式的實際應(yīng)用問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.25、(1)y=2x2+x+3;(2)ACB=41;(3)D(,)【解析】試題分析:把點的坐標(biāo)代入即可求得拋物線的解析式.作BHAC于點H,求出的長度,即可求出ACB的度數(shù).延長CD交x軸于點G,DCEAOC,只可能CAO=DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點的坐標(biāo).試題解析:(1)由題意,得解得 這條拋物線的表達式為(2)作BHAC于點H,A點坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論