版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、天天向上獨家原創(chuàng)一、選擇題1.(2022模擬年四川省宜賓市,6,3eqoac(,分))如圖,OAB與OCD是以點O為位似中心的位似圖形,相似比為1:2,OCD=90,CO=CD。若B(1,0),則點C的坐標為()A.(1,2)B.(1,1)C.(2,2)D.(2,1)【答案】B【解析】如圖,連結BCOCD=90,CO=eqoac(,CD),OCD是等腰直角三角形OAB與OCD是以點O為位似中心的位似圖形,相似比為1:2BCOD,且點B是OD的中點OCD是等腰直角三角形,OB=BCB(1,0),C(1,1)2.(2022模擬江蘇省南京市,3,2eqoac(,分))如圖,在ABC中,DEBC,AD
2、1,則DB2下列結論中正確的是AAE1BDE1AC2BC2ADE1/57BC天天向上獨家原創(chuàng)CADE的周長=1DADE的面積=1ABC的周長3ABC的面積3【答案】C【解析】由周長比等于相似比3.(2022模擬浙江嘉興,5,4分)如圖,直線lll,直線AC分別交l,l,l于123123llF點A,B,C;直線DF分別交l,于點D,E,.AC與DF相交于點H,且AH=2,123HB=1,BC=5,則DE的值為()EFA.1B.2C.2D.3255AHEBDl1l2FCl3【答案】D4.(2022模擬貴州省安順市,8,3分)如圖,ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC
3、等于()A.3:2B.3:1C.1:1D.1:2【答案】D5.(2022模擬四川省綿陽市,12,3分)如圖,D是等邊ABC邊AB上的一點,且ADeqoac(,DB)=12,現(xiàn)將ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上,則CECF=()2/57天天向上獨家原創(chuàng)A3B4C5D64567CEFABD(12題圖)【答案】B【解析】考查了相似以及比例的性質,由題意得,ADDB=12,設AD=1,DB=2,CECF=k;令CE=x,則CE=kx即CE=DE=kxCF=DF=xAE=3kx,BF=3xABC為等邊三角形,A=B=C=EDF=60又ADE+AEF=60,ADE+FDB
4、=60ADE=BFD,AED=BDFADEBFDADAEDEBFBDDFDE13kxkx13kxkx4CEDF3x2x3x2x5CF故選B6.(2022模擬江蘇省無錫市,10,3)如圖,RtABC中,ACB90,AC3,BC4將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B處,兩條折痕與斜邊AB分別交于點E、F,則線段BF的長為()3/57天天向上獨家原創(chuàng)AEDBFC(第10題)BA35B45C23D32【答案】B【解答】解:由翻折可得AEC=DEC=90,ECF=45,利用eqoac(,Rt)AECeqoac(,Rt)ACB,CEAEAC,解
5、得AE=9,CE=12,DF=12,BF=BF=ABAEDF=4,選BACBCAB55557.(2022模擬浙江寧波,10,4eqoac(,分))如圖,將ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去,經(jīng)過第2022模擬次操作后得到的折痕D2014E2014到BC的距離記為h2022模擬.若hl=1,則h2022模擬的值為()A1B1C11D212201522014220152201
6、4【答案】D8.(2022模擬湖南株洲,7,3分)如圖,已知AB、CD、EF都與BD垂直,垂足4/57天天向上獨家原創(chuàng)分別是B、D、F,且AB1,CD3,那么EF的長是.()A、1B、2C、3D、43345ABEFCDEFBEBE1,故選C第7題圖【答案】C【解析】解:ABEFCDABEDCE,ECDC1,同理BEFBCDBEAB3CDBCBEEC49.(2022模擬江蘇淮安,8,3分)如圖,l/l/l,直線a、b與l、l、l分別相交123123于點A、B、C和點D、E、F。若AB2,DE=4,則EF的長是()BC3A8B20C6D1033BCEFEF3【答案】C【解析】因為l/l/l,所以A
7、BDE所以42123所以EF=6故選C10.(2022模擬貴州省銅仁市,9,4分)如圖,在平行四邊形ABCD中,點E在邊DC上,DE:CE3:1,連接AE交BD于點eqoac(,F),則DEF的面積與BAF的面積之比為()A.3:4B.9:16C.9:1D.3:15/57天天向上獨家原創(chuàng)DECAF第9題圖B【答案】B11.(2022模擬成都市,1,3eqoac(,分))如圖,在ABC中,DEBC,AD=6,BD=3,AE=4,則EC的長為()A.1B.2C.3D.412.(2022模擬湖南省永州市,8,3如下圖,下列條件不能判定eqoac(,分))ADBABC【答案】:B【解析】:解:根據(jù)平行
8、線段的比例關系,ADAE,即64,EC2,選B。DBEC3EC的是()AABDACBADBABCAB2ADACDADABABBCBADC(第8題圖)6/57AC時,才能使eqoac(,)天天向上獨家原創(chuàng)【答案】D【解析】解:在ADB和ABC中,A是它們的公共角,那么當ADABABADBABC,不是ADAB.故答案選D.ABBC二、填空題1.(2022模擬四川省自貢市,14,4eqoac(,分))副三角板疊放如圖,則AOB與DOCD的面積之比為_AOBC【答案】132.(2022模擬重慶B卷,14,4eqoac(,分))已知ABCDEF,若ABC與DEF的相似比為2:3,則ABC與DEF對應邊上
9、的中線的比為_.【答案】2:3【解析】解:相似三角形對應中線的比等于相似比.故答案為2:3.3.(2022模擬浙江省金華市,14,4分)如圖直線L1,L2,L6是一組等距的平行線,過直線L1上的點A作兩條射線,分別與直線L3,L6相交于B,E,C,F(xiàn),若BC2,則EF的長是_.7/57天天向上獨家原創(chuàng)【答案】54.(2022模擬四川省涼山州市,17,4分)在ABCD中,M,N是AD邊上的三等分點,連接BD,MC相交于O點,則eqoac(,S)ODM:eqoac(,S)OBC=.【答案】4:9.【解析】解:四邊形ABCD為平行四邊形,AD=BC,M,N為AD的三等分點,MD:AD=2:3,MD:
10、BC=2:3,ADBC,ODMOBC,eqoac(,S)ODM:eqoac(,S)OBC=4:9.5.(2022模擬四川省達州市,14,3分)如圖,將矩形ABCD沿EF折疊,使頂尖C恰好落在AB邊的中點C上,點D落在D處,CD交AE于點M若AB6,BC9,則AM的長為_8/57天天向上獨家原創(chuàng)DAMEDCBFC【答案】AM94【解析】C是AB的中點,AB6,ACBC3,四邊形DCFE沿EF翻折至DCFE,CFCF,CC,BCBFFCBFFC9,F(xiàn)C9BF在RtBCF中,根據(jù)勾股定理得BF2BC2FC2,即32BF2(9BF)2,解得BF4,F(xiàn)C5,又BFCBCF90,ACMBCF90,BFCA
11、CM,AB90,F(xiàn)CBeqoac(,C)AM,BFBC,ACAM即43,3AMAM949/57天天向上獨家原創(chuàng)6.(2022模擬湖南省長沙市,17,3分)如圖,在ABC中,DEBC,AD1,DE6,AB3則BC的長是_ADEBC(第17題圖)【答案】18【解析】7.(2022模擬浙江嘉興,12,5分)右圖是百度地圖的一部分(比例尺14000000),按圖可估測杭州在嘉興的南偏西_度方向上,到嘉興的實際距離約為_.【答案】43,80km(允許合理的操作誤差)8.(2022模擬山東臨沂,18,3eqoac(,分))如圖,在ABC中,BD,CE分別是邊AC、10/57天天向上獨家原創(chuàng)AB上的中線,B
12、D與CE相交于點0,則OB=.OD【答案】2【解析】因為BD、CE分別是邊AC、AB上的中線,所以D、E為AB、AC的中點,所以DE/BC,所以OBBC2=2故答案為2ODDE19.(2022模擬江蘇泰州,14,3eqoac(,分))如圖,ABC中,D為BC上一點,BAD=C,AB=6,BD=4,則CD的長為ABDC(第14題圖)【答案】510.(2022模擬天津市,16,3eqoac(,分))如圖,在ABC中,DEBC,分別交AB,AC于點D,E.若AD=3,DB=2,BC=6,則DE的長為【答案】18511/57天天向上獨家原創(chuàng)11.(2022模擬年湖南衡陽,20,3eqoac(,分)如圖
13、,ABA,ABA,ABA,ABA112223334nnn1都是等腰直角三角形,其中點A,A,A在x軸上,點B,B,B在直線y12n12nx上,已知OA=1,則OA12015的長為.【答案】22014【解析】解:因為點B在直線yx上,所以BOA45.因為ABA是等腰直角三11112角形,所以OAB90.ABAA,所以OAABAA1,所以OA2,111112111122同理OAABAA2,所以OA,同理OA823,所以OA22223342015故答案為22014.22014.12.(2022模擬年江蘇揚州市)如圖,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,同一條直線上的三個點A、B、
14、C都在橫格線上,若線段AB=4cm,則線段BC=cm12/57天天向上獨家原創(chuàng)13.(2022模擬貴州省銅仁市,17,4分)如圖,ACB=90,D為AB中點,連接DC并延長到點E,使CE1CD,過點B作BFDE交AE的延長線于點F,若4BF=10,則AB的長為;FAECD第17題圖B【答案】8三、解答題1.(2022模擬山東省青島市,24,12分)已知:如圖,在ABCD中,AB=3cm,BC=5cm,ACeqoac(,AB).ACD沿AC的方向勻速平移得到PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當PNM停止平移時,點Q也停止移動,如圖.設移動時間
15、為t(s)(0t4).連接PQ、MQ、MC.解答下列問題:(1)當t為何值時,PQMN?(2)設QMC的面積為y(cm2),求y與t之間的函數(shù)關系式;(3)是否存在某一時刻t,使SQMC:S四邊形ABQP1:4?若存在,求出t的值;若不存在,請說明理由;13/57天天向上獨家原創(chuàng)(4)是否存在某一時刻t,使PQMQ?若存在,求出t的值;若不存在,請說明理由;【答案】解:(1)如圖所示,若PQMN,則有CPCQ,PAQBCQ=PA=t,CP=4t,QB=5t,4tt,t5t即209tt2t2,解得t20.9(2)如圖所示,作PDBC于點eqoac(,D),則CPDCBA,CPPD,CBBABA=
16、3,CP=4t,BC=5,4tPD,53PD3(4t).5又CQ=t,QMC的面積為:y3(4t)t3t212t555(3)存在t22使得SQMC:S四邊形ABQP1:4.理由如下:SQMC:S四邊形ABQP1:4,14/57天天向上獨家原創(chuàng)SQMCt2123t,55四邊形ABQPSQMC34(t2t)t2t6,SABCS131231225555(3t212t):(3t212t6)1:4,55553t212t64(3t212t),5555即t24t20,解得t22.當t22時,SQMC:S四邊形ABQP1:4.(4)存在某一時刻t=3,使PQMQ.理由如下:如圖所示,DQCDCQ(4t)tt,
17、作MEBC于點E,PDBC于點eqoac(,D),則CPDCBA,CPPDCD,CBBACABA=3,CP=4t,BC=5,CA=4,4tPDCD,534PD3(4t),CD4(4t).55PQMQ,PDQQEM,PDDQ,QEEM即PDEM=QEDQ.EMPD3(4t)123t,555416955515/57QEDEDQ5(4t)tt,天天向上獨家原創(chuàng)499555(123t)2(169t)(99t),555555即2t23t0,t=3(0舍去).當t=3時,使PQMQ.2.(2022模擬福建省福州市,24,12分)定義:長寬比為n:1(n為正整數(shù))的矩形稱為n矩形.下面,我們通過折疊的方式折
18、出一個2矩形,如圖所示.操作1:將正方形ABCD沿過點B的直線折疊,使折疊后的點C落在對角線BD上的點G處,折痕為BH.操作2:將AD沿過點G的直線折疊,使點A,點D分別落在邊AB,CD上,折痕為EF.則四邊形BCEF為2矩形.證明:設正方形ABCD的邊長為1,則BD=12122.由折疊性質可知BG=BC=1,AFE=BFE=90,則四邊形BCEF為矩形.A=BFE.EFAD.BGBF,BDAB即1BF,2116/57天天向上獨家原創(chuàng)BF1.2BC:BF1:12:1.2四邊形BCEF為2矩形.閱讀以上內容,回答下列問題:(1)在圖中,所有與CH相等的線段是,tanHBC的值是;(2)已知四邊形
19、BCEF為2矩形,模仿上述操作,得到四邊形BCMN,如圖,求證:四邊形BCMN為3矩形;(3)將圖中的3矩形BCMN沿用(2)中的方式操作3次后,得到一個“n矩形”,則n的值是.【答案】解:(1)GH,DG;21;(2)證明:BF2,BC=1,2BD=BF2BC2=(2)2126.22由折疊的性質可知:BP=BC=1,F(xiàn)NM=BNM=90,則四邊形BCEF為矩形.BNM=F,MNEF.BPBN,BEBF即BPBF=BEBN,17/57天天向上獨家原創(chuàng)6BN2,22BN13BC:BN1:13:1.3四邊形BCMN為(3)6.3矩形.3.(2022模擬浙江省麗水市,23,10分)如圖,在矩形ABC
20、D中,E為CD的中AND點,F(xiàn)為BE上的一點,連結CF并延長交AB于點M,MNCM交射線AD于點N(1)當F為BE中點時,求證:AMCE;MBFEC(2)若ABEF2,求AN的值;BCBFND(3)若ABEFn,當n為何值時,MNBE?BCBF【答案】解:(1)F為BE的中點,BFEFABCD,MBFCEF,BMFECFBMFECFMBCEABCD,CEDE,MBAM18/57ADN天天向上獨家原創(chuàng)(2)設MBaABCD,BMFECFEF2,BFCE2MBCE2aABCD2CE4a,AMABMB3aAB2,BCBCAD2aMNMC,AABC90,AMNBCMANAM,即AN2aMBBCa3aA
21、N3a,ND2a3a1a222AN3a1a3ND22(3)方法一:ABEFn,設MBa,由(2)可得BC2a,CEna,AMBCBF(2n1)a由AMNBCM,AN1(2n1)a,DN(2n5)a22DHAM,DNDH,DH(2n5)a,ANAMHE(5n)a19/57天天向上獨家原創(chuàng)MBEH是平行四邊形,(5n)aan4方法二:ABEFn,設MBa,由(2)可得BC2a,CEnaBCBF當MNBE時,CMeqoac(,BE),可證MBCBCEMBBCBCCEa2a2anan44.(2022模擬福建省福州市,25,13分)如圖,在銳角ABC中,D、E分別是AB、BC的中點,點F在AC上,且滿足
22、AFE=A,DMEF交AC于點M.(1)證明:DM=DA;(2)點G在BE上,且BDG=eqoac(,C),如圖,求證:DEGECF;(3)在圖中,取CE上一點H,使得CFH=B,若BG=1,求EH的長.【答案】證明:(1)DMEF,AMD=AFE.AFE=A,AMD=A,20/57天天向上獨家原創(chuàng)DM=DA.(2)D、E分別是AB、BC的中點,DEAC,DEG=C,BDE=A,BDE=AFE.BDG+GDE=C+FEC.BDG=C,EDG=FEC,DEGECF.(3)如圖所示,BDG=C=DEB,B=B,BDGBED.BDBG,BEBD即BD2BEBG.A=AFE,B=CFH,C=180AF
23、ECFH=EFH.又FEH=CEF,EFHECF.EHEF,EFEC21/57天天向上獨家原創(chuàng)即EF2EHEC.DEAC,DMEF,,四邊形DEFM是平行四邊形,EF=DM=AD=BD.BE=ECEH=BG=1.解法2:如圖所示,.在DG上取一點N,使得DN=FHA=AFE,ABC=CFH,C=BDG,EFH=180AFECFH=C=BDG.DEAC,DMEF,四邊形DEFM是平行四邊形,EF=DM=AD=BD.BDNEFH,BE=EH,BND=EHF,BNG=FHC.BDG=C,DBG=CFH,BGD=FHC,BNG=BGD,22/57天天向上獨家原創(chuàng).BN=BGEH=BG=1.解法:3:如
24、圖所示,取AC的中點P,連接PD、PE、PH,則PEAB.PEC=B,CFH=B,PEC=CFH.又C=C,CEPCFH,CECP.CFCHCEFCPH,CFE=CHP.由(2)可得CFE=DGE,CHP=DGE,PHDG.D、P分別為AB、AC的中點,DPGH,DP=1BC=BE,2.四邊形DGHP是平行四邊形,DP=GH=BE23/57天天向上獨家原創(chuàng)EH=BG=1.解法4:如圖所示,作EHF的外接圓交AC于另一點P,連接PE、PH.則HPC=HEF,F(xiàn)HC=CPE,B=CFH,C=C,A=CHF,A=CPE.PEAB.DEAC,四邊形ADEP是平行四邊形,DE=AP=1AC,2.DE=C
25、PGDE=CEF,DEB=C,GDE=CPH,DEGPCH,GE=HC,EH=BG=1.解法5:如圖所示,24/57天天向上獨家原創(chuàng)取AC的中點P,連接PD、PE、PH.則PEAB.PEC=B.又CFH=B,PEC=CFH,又C=C,CEPCFH,CECP.CFCHCEFCPH,CEF=CPH.由(2)可得CEF=EDG,C=DEGD、E分別為AB、AC的中點,DE=1AC=PC,2DEGPCH,GE=HC,EH=BG=1.5.(2022模擬浙江省湖州市,10,分)(本小題10分)已知在ABC中,AB邊上的動點D由A向B運動(與A、B不重合),點E與點D同時出發(fā),由點C沿BC的延長線方向運動(
26、E不與C重合),連結DE交AC于點F,點H是線段AF上一點25/57天天向上獨家原創(chuàng)(1)初步嘗試如圖1,若ABC是等邊三角形,DHAC,且點D、E的運動速度相等求證:HFAHCF小王同學發(fā)現(xiàn)可以由以下兩種思路解決此問題:思路一:過點D作DGBC,交AC于點G,先證GHAH,再證GFCF,從而證得結論成立;思路二:過點F作EMAC,交AC的延長線于點M,先證CMAH,再證HFMF,從而證得結論成立請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分):(2)類經(jīng)探究如圖2,若在ABC中,ABC90,ADHBAC30,且點D、E的運動速度之比是31,求AC的值;HF
27、AAAGHDHDHDFFFECM圖1BEC圖2BEC圖3B(3)延伸拓展如圖3,若在ABC中,ABAC,ADHBAC36,記BCm,且點D、AB26/57天天向上獨家原創(chuàng)E的運動速度相等,試用含m的代數(shù)式表示AC(直接寫出結果,不必寫解答過程)HF【答案】【解析】(1)證明方法一(選擇思路一)過點D作DGBC,交AC于點G,如圖1,ABC是等邊三角形,ADGB60,A60,ADG是等邊三角形,GDADCE,DHAC,GHAH,DGBC,GDFCEF,DGFECF,GDFCEF,GFCF,GHGFAHCF,即HFAHCFAHGFECBM方法(選擇思路二):過點E作EMAC,交AC的延長線于點M,
28、如圖1,ABC是等邊三角形,AACBECM60,DHAC,EMAC,27/57天天向上獨家原創(chuàng)AHDCME90,ADCE,ADHCEM,AHCM,DHEM,又DHFEMF90,DFHEFM,DFHEFM,HFMFCMCFAHCF(2)解:過點D作DGBC,交AC于點G,如圖2,則ADGB90,BACADH30,HGDHDG60,AHGHGD,AD3GD,由題意可知,AD3CE,GDCE,DGBC,GDFCEF,DGFECF,GDFCEF,GFCF,GHGFAHCF,即HFAHCFAHGFECAC2HFDB28/57天天向上獨家原創(chuàng)(3)ACm1HFm其思路是這樣的,如圖所示,過點D作DMBE交
29、AC于點M由AADH36,ABAC,易得AHHDDM,MHDADMABC,所以MHMHMHMDMDBCm,MDHDAHAMADAB所以MHmMD,由DMBE,ADEC,得MFMDMDBCm,F(xiàn)CECADAB所以MFmFC,所以AC=HFAHFC(HMMF)(AHHF)HFHFHMMFm(AHHF)(AHHF)m1m(AHHF)mAHMDFECB6.(2022模擬浙江臺州,23,12分)如圖,在多邊形ABCDE中,A=AED=D=90,AB=5,AE=2,ED=3過點E作EFCB交AB于點F,F(xiàn)B=1,過AE上的點P作PQAB交線段EF于點O,交折線BCD于點Q設AP=x,POOQ=y(1)延長
30、BC交ED于點M,則MD=,DC=;求y關于x的函數(shù)解析式;29/57天天向上獨家原創(chuàng)(2)當ax1a0時,9ay6b,求a,b的值;2(3)當1y3時,請直接寫出x的取值范圍EDCPOQA第23題圖FB【答案】解:1由題意有BMEF,BFEM四邊形EFBM是平行四邊形EMBF1DMEDEM312DC即DC221OP即t2x則t42x22x12x,1x2EDAB,EFBMDMBFBMEFA又AD90CDMEFADMAEAF4當Q在DC上時,此時3x2,令OPt,OQ3t2PEAFAE42yOPOQt3t42x2x1當Q在BC上,OQBF1,OPy此時0 x1,y42x函數(shù)的解析式:42x,0
31、x1y30/57天天向上獨家原創(chuàng)2由1y隨著x的增大而減小,有429a,解之得:a,b1242a6b15393當0 x1,142x3則1x3221x12當1x2,yy22x25x2對稱軸xb592a4max4當x1,y2,滿足題意y22x25x21,x55此時x552441x5+557.(2022模擬山東省德州市,23,10分)(1)問題如圖1,在四邊形ABCD中,點P為AB上一點,DPC=A=B=90.求證:ADBC=APBP.(2)探究如圖2,在四邊形ABCD中,點P為AB上一點,當DPC=A=B=時,上述結論是否依然成立?說明理由.(3)應用請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,
32、在ABD中,AB=6,AD=BD=5.點P以每秒1個單位長度的速度,由點31/57天天向上獨家原創(chuàng)tA出發(fā),沿邊AB向點B運動,且滿足DPC=A.設點P的運動時間為(秒),當以D為圓心,以DC為半徑的圓與AB相切,求t的值.【答案】解:(1)證明:如圖1DPC=A=B=90,ADP+APD=90,BPC+APD=90,APD=BPC.ADPBPC.AD=AP.BPBCADBC=APBP.(2)結論ADBC=APBP仍成立.32/57天天向上獨家原創(chuàng)理由:如圖2,BPD=DPC+BPC.又BPD=A+ADP.DPC+BPC=A+ADP.DPC=A=.BPC=ADP.又A=B=.ADPBPC.AD
33、=AP.BPBCADBC=APBP.(3)如圖3,過點D作DEAB于點E.AD=BD=5,AB=6.AE=BE=3.由勾股定理得DE=4.以D為圓心,以DC為半徑的圓與AB相切.DC=DE=4.BC=54=1,又AD=BD,A=B.由已知,DPC=A,DPC=A=B.由(1)、(2)的經(jīng)驗可知ADBC=APBP.又AP=t,BP=6t,33/57天天向上獨家原創(chuàng)t(6t)=51.解得t1=1,t2=5.t的值為1秒或5秒.8.(2022模擬安徽,23,14分)如圖1,在四邊形ABCD中,點E、F分別是ABCD的中點.過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接GA、GB、GC、
34、GD、EF.若AGD=BGC.(1)求證:AD=BC;(2)求證:AGDEGF;(3)如圖2,若AD、BC所在直線互相垂直,求的AD值.EF【答案】(1)略(2)略(3)2【解析】解:(1)證明:GE是AB的垂直平分線,GA=GB.同理GD=GC.在ACD和BGC中,GA=GB,AGD=BGC,CD=GC,AGDeqoac(,)BGC,AD=BC.(2)證明:AGD=BGC,AGB=DGC.34/57天天向上獨家原創(chuàng).在AGB和DGC中,GAGB,AGB=DGC,AGBeqoac(,)DGCGDGCAGEG.又AGE=DGF,AGD=EGF,AGDEGFDGFG.(3)解:如圖1,延長AD交G
35、B于點M,交BC的延長線于點H,則AHeqoac(,BH).由AGDBGC,知GAD=GBC,在GAM和HBM中,GAD=GBC,GMA=HMBAGB=AHB=90,AGE=1AGB=45,AG22EG又AGDEGF,ADAG2EFEG(本小題解法有多種,如可按圖2和按圖3作輔助線求解,過程略)9.(2022模擬江蘇省南京市,20,8eqoac(,分))如圖,ABC中,CD是邊AB上的高,且ADCDCDBD(1)求證ACDCBD;(2)求ACB的大小CADB【答案】【解析】(1)證明:CD是邊AB上的高,35/57天天向上獨家原創(chuàng)ADC=CDB=90.又ADCDCDBDACDCBD(2)ACD
36、CBDA=BCD在ACD中,ADC=90,A+ACD=90.BCD+ACD=90即ACB=9010.(2022模擬上海市,23,12分)已知:如圖5,平行四邊形ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,聯(lián)結DE.(1)求證:DEBE;(2)如果BDOECD,求證:DE【答案】(1)證明略;(2)證明略;【解析】解:(1)OB=OE,OEB=OBE四邊形ABCD是平行四邊形,OB=OD;OB=OE,OD=OE,OED=ODE;在BED中,OEB+OBE+OED+ODE=180OEB+OED=,即BED=90,故DEBE。(2)設OE交CD于H,OECD于H,CHE=90,
37、CEH+HCE=90OBE=36/57天天向上獨家原創(chuàng)CED=90,CDE+DCE=90CDE=CEH;OEB=OBE,OBE=CDE;在CED與DEB中CEDDEB11.(2022模擬江蘇泰州,23,10分)(本題滿分10分)如圖,某倉儲中心有一斜坡AB,其坡度為i=12,頂部A處的高AC為4m,B、C在同一水平面上.(1)求斜坡AB的水平寬度BC;(2)矩形DEFG為長方形貨柜的側面圖,其中DE=2.5m,EF=2m將貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高(52.236,結果精確到0.1m)ADGE4mFCB(第23題圖)解:(1)斜坡AB的坡度為i=12,AC1,BC2
38、AC=4m,37/57天天向上獨家原創(chuàng)BC=8m;ADGE4mMFCHB(第23題答圖)(2)過點D作BC的垂線,垂足為點H,交AB于點M,在矩形DEFG中,DGM=90,DG=EF=2m,GF=DE=2.5m,DGM=BHM,DMG=BMH,DMGBMH,GMHM1,DGBH2GM=1cm,F(xiàn)M=1.5m,DM=5m,BM=FMBF=5m,在RtBHM中,BM2=MH2BH2,BH=2MH,MH=5m,DH=25m4.5m12.(2022模擬四川南充,22,8分)如圖,矩形紙片ABCD,將AMP和BPQ分別沿PM和PQ折疊(APAM),點A和點B都與點E重合;再將CQD沿DQ折疊,點C落在線
39、段EQ上點F處(1)判斷AMP,BPQ,CQD和FDM中有哪幾對相似三角形?(不需說明理由)38/57天天向上獨家原創(chuàng)(2)如果AM1,sinDMF3,求AB的長5APBMEDFQC13【答案】(1)AMPBPQCQD;(2)6.【解析】解:(1)有三對相似三角形,即AMPBPQCQD(2)設AP=x,由折疊關系,BP=AP=EP=x,AB=DC=2x,AM=1由AMPBPQ得,AMAP,即BQ=x2。BPBQ由AMPCQD得,APAM,即CQ=2。CDCQAD=BC=BQ+CQ=x2+1又在eqoac(,Rt)FDM中,sinDMF3,DF5=DC=2x,2x3x215變形得,3x210 x
40、30,解方程得,x3,x1(不合題意,舍去)2即AB=613.(2022模擬江蘇省無錫市,26,10)(本題滿分10分)已知:平面直角坐標系中,四邊形OABC的頂點分別為O(0,0)、A(5,0)、B(m,2)、C(m5,2)(1)是否存在這樣的m,使得在邊BC上總存在點P,使OPA90?若存在,求出m的取值范圍;若不存在,請說明理由39/57天天向上獨家原創(chuàng)(2)當AOC與OAB的平分線的交點Q在邊BC上時,求m的值【答案】解:(1)1m9;(2)m的值為3.5或6.5【解答】解:(1)由題可得,BC=5,B、C兩點在y=2的直線上,直線y=2與y軸交于點G,過A點作AHBC,垂足為eqoa
41、c(,H),易得OPGPAH,GPAH,設OGPHGP=x,則x2,解之得x=1或x=4,故存在以下兩種情況25x如圖1,當OPA=90時,GP=1時,P點在BC上,得m51,解之得:1m6m1yCGPBHOAx當如圖2,當OPA=90時,GP=4時,P點在BC上,得m54,解之得:4mm49yGCPHBOAx綜上可得,1m9(2)BCOA,BC=OA=5、四邊形OABC是平行四邊形40/57天天向上獨家原創(chuàng)ABOC延長AQ交OC延長線于點M3=MAQ平分OAB2=32=MOA=OM且OQ平分AOC,OQAQ,AQ=MQ由(1)得此時Q點坐標為(1,2)或(4,2),如圖3,4MyC5Q4B3
42、O12AxMyC5Q4123AOx在AQB和MQC中B41/57AQMQ45天天向上獨家原創(chuàng)3MAQBMQCCQ=BQ當Q點坐標為(1,2)時m1=1(m5)解之得m=3.5當Q點坐標為(4,2)時m4=4(m5)解之得m=6.5m綜上可得,當AOC與OAB的平分線的交點Q在邊BC上時,的值為3.5或6.5設菱形OMPQ的面積為S,eqoac(,1)NOC的面積為S2,求的取值范圍S114.(2022模擬江蘇省無錫市,28,10)(本題滿分10分)如圖,C為AOB的邊OA上一點,OC6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQOA交OB于點Q,PMOB交OA于點M(1
43、)若AOB60,OM4,OQ1,求證:CNOB(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形問:11的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說OMON明理由S242/57天天向上獨家原創(chuàng)BNQPOM(第28題)CAPQQN【答案】(1)見解答(2)11的值不變,111;0S11OMONOMON6S22【解答】解:(1)證明:如圖1,PQOA,PMOB四邊形OMPQ是平行四邊形PQ=OM=4QNOCONQNOQPQ=4,OC=6,OQ=1QN=2ON=3取OC中點E,連接NEON=OE=3AOB=60ONE是等邊三角形43/57天天向上獨家原創(chuàng)ONE=NEO=60NE
44、=OE=OC=3ENC=ECN=30ONC=ONE+ENC=90CNOBBNQPOEMCA(2)11的值不變,理由如下:如圖2,OMONBONQPMCA四邊形OMPQ是菱形OM=OQ=PQ1111ONOQQNOMONOQONOQONOQON四邊形OMPQ是菱形PQOC44/57112S2QNOQ2x(ax)1OChOCh天天向上獨家原創(chuàng)QNPQONOCQNPQ1OMONOQONOQOCOCOC=6111OMON6過點Q作QG垂直O(jiān)C,垂足為G,記作h1,過點N作NH垂直O(jiān)C,垂足為H,記作h2S1OMh12PQh1S1222QGOC,NHOCQGO=NHO=90QGNHh1OQhON2四邊形O
45、MPQ是菱形PQOCPQQNOCONS12PQh12QNOQSOChONON22設ON=a,QN=x,則OQ=ax112(xa)2a222SONONa2a22當x=1a時,S1有最大值12S220S11S2245/57天天向上獨家原創(chuàng)BNQPh1h2OGHMCA15.(2022模擬山東省威海市,23,10分)(1)如圖,已知ACB=DCE=90,AC=BC=6,CD=CE,AE=3,CAE=45求AD的長(2)如圖,已知ACB=DCE=90,ABC=CED=CAE=30,AC=3,AE=8,求AD的長ABCDE46/57天天向上獨家原創(chuàng)(第23題圖)(第23題圖)【答案】(1)AD=9(2)A
46、D=1033【解析】解:(1)連接BE(第23題圖)ACB=DCE=90,ACB+ACE=DCE+ACE即BCE=ACD又AC=BC,CD=CE,ACDBCE,AD=BEAC=BC=6,AB=62BAC=CAE=45,BAE=90在RtBAE中,AB=62,AE=3,BE=(62)232=9,AD=9(2)連接BE47/57天天向上獨家原創(chuàng)ACBD(第23題圖)在RtACB和RtDCE中,ABC=CED=30,tan30ACDC3BCEC3ACB=DCE=90,ACB+BCD=BCD+DCE即BCE=ACDACDBCEADAC3BEBC3BAC=60CAE=30,BAE=90在RtACB中,A
47、C=3,ABC=30,AB=6,在RtBAE中,AB=6,AE=8,BE=10,AD3,AD=103BE3316.(2022模擬浙江省杭州市,22,12eqoac(,分))如圖,在ABC中(BCAC),ACB=90,點D在AB邊上,DEAC于點E.48/57天天向上獨家原創(chuàng)(1)若AD1,AE=2,求EC的長;DB3(2)設點F在線段EC上,點G在射線CB上,以F,C,G為頂點的三角形與EDC有一個銳角相等,F(xiàn)G交CD于點P.問:線段CP可能是CFG的高線還是中線?或兩者都有可能?請說明理由.CEADB(第22題)解:(1)因為ACB=Rt,DEAC,所以DEBC,所以ADAE.DBEC因為A
48、D1,AE=2,所以21,解得EC=6.DB3EC3(2)若CFG1=ECD.此時線段CP1為eqoac(,Rt)CFG1邊上的中線.證明:因為CFG1=ECD,所以CFG1=FCP1,又因為CFG1+CG1F=90,F(xiàn)CP1+P1CG1=90,所以CG1F=P1CG1,所以CP1=G1P1,又因為CFG1=FCP1,所以CP1=FP1,所以CP1=FP1=G1P1,所以線段CP1為eqoac(,Rt)CFG1的FG1邊上的中線.EFCG1P1P2G2ADB若CFG2=EDC.此時線段CP2為eqoac(,Rt)CFG2的FG2邊上的高線.49/57天天向上獨家原創(chuàng)證明:因為CFG2=EDC,
49、因為DEAC,所以DEC=90,所以EDC+ECD=90,所以ECD+CFG2=ECD+EDC=90,所以CP2FG2,即CP2為eqoac(,Rt)CFG2的FG2邊上的高線.當CD為ACB的平分線時,CP既是CFG的FG邊上的高線又是中線.17.(2022模擬山東省菏澤市,16,6分)(1)(6分)如圖,M,N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞,工程人員為計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM1千米、AN1.8千米,AB54米、BC45米、AC30米,求M、N兩點之間的直線距離.
50、解:連接MN,AC30,AB543,AM1000AN1800100ACAB,AMANBAC=NAM,BACNAM,BC3,MN100453,MN100MN=1500.答:M、N兩點之間的直線距離為1500米.(或結論語:故M、N兩點之間的直線距離為1500米,或寫成1.5千米.)50/57天天向上獨家原創(chuàng)18.(2022模擬浙江省紹興市,24,12分)(本題14分)在平面直角坐標系中,O為原點,四邊形OABC的頂點A在x軸的正半軸上,OA=4,OC=2,點P,點Q分別是邊BC,邊AB上的點,連結AC,PQ,點B1是點B關于PQ的對稱點。(1)若四邊形OABC為矩形,如圖1,求點B的坐標;若BQ
51、:BP=1:2,且點B1落在OA上,求點B1的坐標;(2)若四邊形OABC為平行四邊形,如圖2,且OCAC,過點B1作B1Fx軸,與對角線AC、邊OC分別交于點E、點F。若B1E:B1F=1:3,點B1的橫坐標為m,求點B1的縱坐標,并直接寫出m的取值范圍?!敬鸢浮?1)點B(4,2);如圖1,過點P作PDOA,垂足為點D。BQ:BP=1:2,點B關于PQ的對稱點為B1,B1Q:B1P=1:2.PDB1=PB1Q=B1AQ=90,PB1D=B1QA,PB1DBeqoac(,1)QA,PDPB=2,1ABBQ1151/57天天向上獨家原創(chuàng)BA=1,OB1=3,即點B1(3,0);(2)四邊形OA
52、BC為平行四邊形,OA=4,OC=2,且OCAC,OAC=30,點C(1,3)。B1E:B1F=1:3,點B1不與點E、F重合,也不在線段EF的延長線上。當點B1在線段EF的延長線上時,如圖2,延長B1F與y軸交于點G,點B1的橫坐標為m,B1Fx軸,B1E:B1F=1:3,B1G=m。設OG=a,則GF=3a,OF=23a,33CF=223a,3EF=4433a,B1E=223a3B1G=B1E+EF+FG=(223a)+(443a)+3a=m,333a=3m+6553,即B1的縱坐標為3m+6553,77;m的取值范圍為17m1+107當點B1在線段EF(除點E、F)上時,如圖3,延長B1
53、F與y軸交于點G,點B1的橫坐標為m,B1Fx軸,B1E:B1F=1:3,B1G=m。設OG=a,則GF=3a,OF=23a,33CF=223a,343a3a,B1F=3FE=443EF=3B1G=B1F+FG=(33a)+3a=m,352/57天天向上獨家原創(chuàng)a=3m+3223,即B1的縱坐標為3m+3223,m的取值范圍為15m3.7【解析】本題考查了矩形、平行四邊形的性質、圖形軸對稱的性質以及圖形相似的性質和分類討論的數(shù)學思想第(1)題,可得PB1DBeqoac(,1)QA,從而求得BA=1、OB1=3,即可得點B1坐標為(3,0);第(2)題,先求得點C(1,3),再根據(jù)條件B1E:B1F=1:3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學題庫檢測試卷A卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)能力提升試卷A卷附答案
- 2024年度年福建省高校教師資格證之高等教育學練習題及答案
- 全國職業(yè)院校技能大賽中職組(母嬰照護賽項)考試題及答案
- 四年級數(shù)學(小數(shù)加減運算)計算題專項練習與答案
- 建筑會議紀要
- 內蒙古英語高二上學期期末試卷及解答參考(2024年)
- 高溫熱管換熱器的穩(wěn)定性設計和結構參數(shù)優(yōu)化
- 2024房產(chǎn)領域聯(lián)合投資建設協(xié)議
- 吊車租賃業(yè)務協(xié)議2024詳細條款
- 小學科學教育科學三年級上冊天氣《認識氣溫計》教學設計
- 液化氣站氣質分析報告管理制度
- 砍伐工程方案35963
- 《大醫(yī)精誠》說課(新)
- 牛羊屠宰管理辦法
- 《微觀經(jīng)濟學》課程思政教學案例(一等獎)
- DBJ50T-232-2016 建設工程監(jiān)理工作規(guī)程
- 國際人力資源管理課程教學大綱
- 深信服園區(qū)級雙活數(shù)據(jù)中心
- T-CSCS 016-2021 鋼結構制造技術標準
- 回彈強度對應表
評論
0/150
提交評論