版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 第二十七章 相似27.2 相似三角形 27.2.3 相似三角形應(yīng)用舉例1. 能夠利用相似三角形的知識,求出不能直接測量的物體的高度和寬度. (重點)2. 進一步了解數(shù)學(xué)建模思想,能夠?qū)嶋H問題轉(zhuǎn)化為相似三角形的數(shù)學(xué)模型,提高分析問題、解決問題的能力. (難點)學(xué)習(xí)目標(biāo)新課導(dǎo)入情景導(dǎo)入怎樣測量這些非常高大的物體的高度?新課講解 知識點1 利用相似三角形測量高度據(jù)傳說,古希臘數(shù)學(xué)家、天文學(xué)家泰勒斯曾利用相似三角形的原理,在金字塔影子的頂部立一根木桿,借助太陽光線構(gòu)成兩個相似三角形,來測量金字塔的高度.新課講解例1 如圖,木桿 EF 長 2 m,它的影長 FD 為3 m,測得 OA 為 201 m
2、,求金字塔的高度 BO.解:太陽光是平行的光線,因此 BAO =EDF.又 AOB =DFE = 90,ABO DEF. , =134 (m).因此金字塔的高度為134 m.新課講解結(jié)論測高方法一: 測量不能到達頂部的物體的高度,可以用“在同一時刻物高與影長成正比例”的原理解決. 表達式:物1高 :物2高 = 影1長 :影2長新課講解練一練1. 如圖,要測量旗桿 AB 的高度,可在地面上豎一根竹竿 DE,測量出 DE 的長以及 DE 和 AB 在同一時刻下地面上的影長即可,則下面能用來求AB長的等式是 ( ) A B C D C新課講解練一練2. 如圖,九年級某班數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)數(shù)
3、學(xué)知識測量學(xué)校旗桿的高度,當(dāng)身高 1.6 米的楚陽同學(xué)站在 C 處時,他頭頂端的影子正好與旗桿頂端的影子重合,同一時刻,其他成員測得 AC = 2 米,AB = 10 米,則旗桿的高度是_米 8新課講解想一想:AFEBO還可以有其他測量方法嗎?OBEF=OAAFABOAEFOB =OA EFAF平面鏡新課講解結(jié)論測高方法二: 測量不能到達頂部的物體的高度,可以用“利用鏡子的反射測量高度”的原理解決. 新課講解練一練如圖是小明設(shè)計用手電來測量某古城墻高度的示意圖,點 P 處放一水平的平面鏡,光線從點 A出發(fā)經(jīng)平面鏡反射后,剛好射到古城墻的頂端 C 處,已知 AB = 2 米,且測得 BP = 3
4、 米,DP = 12 米,那么該古城墻的高度是 ( )BA. 6米 B. 8米 C. 18米 D. 24米 新課講解 知識點2 利用相似三角形測量寬度例2 如圖,為了估算河的寬度,我們可以在河對岸選定一個目標(biāo)點 P,在近岸取點 Q 和 S,使點 P,Q,S共線且直線 PS 與河垂直,接著在過點 S 且與 PS 垂直的直線 a 上選擇適當(dāng)?shù)狞c T,確定 PT 與過點 Q 且垂直 PS 的直線 b 的交點 R. 已知測得QS = 45 m,ST = 90 m,QR = 60 m,請根據(jù)這些數(shù)據(jù),計算河寬 PQ.PRQSbTa新課講解PQ90 = (PQ+45)60.解得 PQ = 90.因此,河寬
5、大約為 90 m.解:PQR =PST =90,P=P,PQRPST.PRQSbTa ,即 ,還有其他構(gòu)造相似三角形求河寬的方法嗎?45m90m60m新課講解例3 如圖,為了估算河的寬度,我們可以在河對岸選定一個目標(biāo)作為點 A,再在河的這一邊選點 B 和 C,使 ABBC,然后,再選點 E,使 EC BC ,用視線確定 BC 和 AE 的交點 D此時如果測得 BD80 m,DC30 m,EC24 m,求兩岸間的大致距離 ABEADCB30 m24 m80 m新課講解解: ADBEDC, ABCECD90, ABDECD. ,即 ,解得 AB = 64. 因此,兩岸間的大致距離為 64 m.EA
6、DCB60m50m120m新課講解結(jié)論測量如河寬等不易直接測量的物體的寬度,常構(gòu)造相似三角形求解. 新課講解 知識點3 利用相似解決有遮擋物問題例4 如圖,左、右并排的兩棵大樹的高分別是 AB = 8 m 和 CD = 12 m,兩樹底部的距離 BD = 5 m,一個人估計自己眼睛距離地面 1.6 m,她沿著正對這兩棵樹的一條水平直路 l 從左向右前進,當(dāng)她與左邊較低的樹的距離小于多少時,就看不到右邊較高的樹的頂端C 了? 新課講解分析:如圖,設(shè)觀察者眼睛的位置 (視點) 為點 F,畫出觀察者的水平視線 FG,它交 AB,CD 于點 H,K.視線 FA,F(xiàn)G 的夾角 AFH 是觀察點 A 的仰
7、角. 類似地,CFK 是觀察點 C 時的仰角,由于樹的遮擋,區(qū)域和都在觀察者看不到的區(qū)域 (盲區(qū)) 之內(nèi). 再往前走就根本看不到 C 點了.新課講解 由此可知,如果觀察者繼續(xù)前進,當(dāng)她與左邊的樹的距離小于 8 m 時,由于這棵樹的遮擋,就看不到右邊樹的頂端 C . 解:如圖,假設(shè)觀察者從左向右走到點 E 時,她的眼 睛的位置點 E 與兩棵樹的頂端點 A,C 恰在一條 直線上 ABl,CDl,ABCD. AEHCEK. ,即解得 EH=8.課堂小結(jié)利用相似解決有遮擋物問題利用相似三角形測量寬度相似三角形的應(yīng)用舉例利用相似三角形測量高度當(dāng)堂小練1. 小明身高 1.5 米,在操場的影長為 2 米,同
8、時測得教學(xué)大樓在操場的影長為 60 米,則教學(xué)大樓的高度應(yīng)為 ( ) A. 45米 B. 40米 C. 90米 D. 80米 2. 小剛身高 1.7 m,測得他站立在陽光下的影子長為0.85 m,緊接著他把手臂豎直舉起,測得影子長為 1.1 m,那么小剛舉起的手臂超出頭頂 ( ) A. 0.5 m B. 0.55 m C. 0.6 m D . 2.2 mAA當(dāng)堂小練3. 如圖,有點光源 S 在平面鏡上面,若在 P 點看到點光源的反射光線,并測得 AB10 cm,BC20 cm,PCAC,且 PC24 cm,則點光源 S 到平面鏡的距離 SA 為 .12 cm當(dāng)堂小練4. 如圖,為了測量水塘邊
9、A、B 兩點之間的距離,在可以看到 A、B 的點 E 處,取 AE、BE 延長線上的 C、D 兩點,使得 CDAB. 若測得 CD5 m,AD15 m,ED=3 m,則 A、B 兩點間的距離為 m.ABEDC20當(dāng)堂小練5. 如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板 DEF 來測量操場旗桿 AB 的高度,他們通過調(diào)整測量位置,使斜邊 DF 與地面保持平行,并使邊DE 與旗桿頂點 A 在同一直線上,已知 DE = 0.5 米,EF = 0.25 米,目測點 D 到地面的距離 DG = 1.5 米,到旗桿的水平距離 DC = 20 米,求旗桿的高度.ABCDGEF當(dāng)堂小練ABCDGEF解:由題意可得:DEFDCA,DE=0.5米,EF=0.25米,DG=1.5米,DC=20米,則 解得:AC = 10,故 AB = AC + BC= 10 + 1.5 = 11.5 (米).答:旗桿的高度為 11.5 米. 拓展與延伸6. 如圖,某一時刻,旗桿 AB 的影子的一部分在地面上,另一部分在建筑物的墻面上小明測得旗桿AB 在地面上的影長 BC 為 9.6 m,在墻面上的影長 CD 為 2 m同一時刻,小明又測得豎立于地面長 1 m 的標(biāo)桿的影長為 1.2 m請幫助小明求出旗桿的高度ABCD拓展與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版本地合作協(xié)議標(biāo)準(zhǔn)格式版B版
- 2024年股東權(quán)益保護與承諾協(xié)議
- 2024建房安全合同協(xié)議書建房安全合同
- 2025版酒店加盟品牌運營與推廣合同范本3篇
- 2025版文化產(chǎn)業(yè)園開業(yè)慶典合同樣本3篇
- 2024年電子合同法律效力研究
- 2025版居間合同范本(全新版)9篇
- 2024年綜合安全監(jiān)控布局施工協(xié)議條款版B版
- 課題申報書:大學(xué)生學(xué)術(shù)思維能力培育研究
- 2025版房地產(chǎn)投資貸款合同房地產(chǎn)金融產(chǎn)品范本3篇
- 通風(fēng)與空調(diào)工程施工質(zhì)量驗收規(guī)范課件
- 300T汽車吊主臂起重性能表
- 燃氣輪機及燃氣蒸汽聯(lián)合循環(huán)概述匯總
- 領(lǐng)導(dǎo)科學(xué) ——領(lǐng)導(dǎo)藝術(shù)
- 用matlab解決電磁學(xué)中的電場問題
- 斜拉索安裝施工及調(diào)索監(jiān)控施工工藝工法解讀
- 中建一局質(zhì)量考核評價辦法
- 民辦非企業(yè)單位會計報表(會民非表010203)
- 深圳市排水管網(wǎng)維護管理質(zhì)量
- 振沖碎石樁施工工藝標(biāo)準(zhǔn)
- 變電站二次設(shè)計規(guī)范
評論
0/150
提交評論