煤礦礦井通風(fēng)系統(tǒng)中英文對(duì)照外文翻譯文獻(xiàn)_第1頁(yè)
煤礦礦井通風(fēng)系統(tǒng)中英文對(duì)照外文翻譯文獻(xiàn)_第2頁(yè)
煤礦礦井通風(fēng)系統(tǒng)中英文對(duì)照外文翻譯文獻(xiàn)_第3頁(yè)
煤礦礦井通風(fēng)系統(tǒng)中英文對(duì)照外文翻譯文獻(xiàn)_第4頁(yè)
煤礦礦井通風(fēng)系統(tǒng)中英文對(duì)照外文翻譯文獻(xiàn)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 中英文對(duì)照翻譯比較美國(guó)煤礦礦井通風(fēng)系統(tǒng)的效率摘 要隨著能源消耗的加劇,提高煤礦通風(fēng)系統(tǒng)的效率成為了一個(gè)日益重要的課題。因?yàn)橥L(fēng)機(jī)的耗能占了煤礦能耗的一大部分,因此建立一個(gè)高效的通風(fēng)系統(tǒng)是煤礦主動(dòng)降低生產(chǎn)成本的重要途徑。通常,衡量礦井通風(fēng)系統(tǒng)效率的方法是計(jì)算其容積效率,簡(jiǎn)記作用于礦井生產(chǎn)的有效風(fēng)量占礦井總風(fēng)量的比例。這個(gè)衡量標(biāo)準(zhǔn)的目的是用數(shù)據(jù)來(lái)對(duì)美國(guó)的礦井通風(fēng)系統(tǒng)做一次全國(guó)性的比較。這項(xiàng)研究的成果旨在揭示當(dāng)今煤礦通風(fēng)系統(tǒng)的效率以及哪些因素可能導(dǎo)致礦井通風(fēng)系統(tǒng)效率的或高或低。容積效率的定義礦井通風(fēng)系統(tǒng)的容積效率定義為礦井的有效風(fēng)量與礦井總風(fēng)量的比值。大家對(duì)“有效風(fēng)量”的組成還是眾說(shuō)紛紜。McPh

2、erson 把有效風(fēng)量定義為:“到達(dá)工作面的風(fēng)和那些用于稀釋例如:機(jī)電硐室、水泵房和充電站等硐室內(nèi)空氣的風(fēng)的總和”。然而,Hartman 則認(rèn)為有效風(fēng)量包括總回風(fēng)石門風(fēng)量和帶區(qū)內(nèi)風(fēng)量的總和。本次研究中,我們認(rèn)為礦井空氣中的有效風(fēng)量包括用于稀釋工作面空氣的風(fēng),還有用于主要生產(chǎn)設(shè)備(例如機(jī)電硐室、泵房以及充電站等)用風(fēng)點(diǎn)的風(fēng)量之和。在確定礦井主要風(fēng)機(jī)總風(fēng)量和礦井有效風(fēng)量總和之后,下列公式可以用來(lái)計(jì)算礦- 1 - 井通風(fēng)系統(tǒng)效率。通風(fēng)系統(tǒng)效率 礦井有效風(fēng)量100%(1)主要風(fēng)機(jī)總風(fēng)量通風(fēng)系統(tǒng)效率值會(huì)在一個(gè)很大的范圍內(nèi)波動(dòng)。McPherson 的陳述中透露通風(fēng)效率值可以從 75%降至 10%。本次研究

3、中,礦井通風(fēng)系統(tǒng)的效率值在14.5%到 71.6%的范圍內(nèi)。當(dāng)?shù)V井通風(fēng)系統(tǒng)的效率值在一個(gè)較低的水平時(shí),意味著主要通風(fēng)機(jī)鼓出的大量的風(fēng)沒(méi)有起到作用,導(dǎo)致了大量潛在的能源浪費(fèi)。導(dǎo)致通風(fēng)系統(tǒng)效率降低的因素造成容積效率低下最主要的兩個(gè)因素包括漏風(fēng)和流經(jīng)廢棄工作面、采空區(qū)而損失的風(fēng)。由于石門和填充物而產(chǎn)生的漏風(fēng)可以通過(guò)改善礦井的建設(shè)以及加強(qiáng)維護(hù)來(lái)實(shí)現(xiàn)最小化。然而,無(wú)論礦井建設(shè)的質(zhì)量有多么棒,在那些使用了大量填充物的礦井中想要避免漏風(fēng)是不可能的。另外,隨著通風(fēng)機(jī)風(fēng)壓上升,漏風(fēng)也自然而然的就會(huì)增多,因此,在高風(fēng)壓風(fēng)機(jī)的礦井中更易于產(chǎn)生漏風(fēng)。在礦井中減少漏風(fēng)的一個(gè)可靠的方法是盡量避免入口處風(fēng)流流向正相反的方向

4、。這可以通過(guò)設(shè)置中立的一個(gè)甚至多個(gè)入口來(lái)分流、重建風(fēng)路或者借助于防水煤柱來(lái)分流和重建風(fēng)路來(lái)實(shí)現(xiàn)。當(dāng)然,這需要在礦井的規(guī)劃階段就結(jié)合礦井通風(fēng)系統(tǒng)來(lái)進(jìn)行設(shè)計(jì),但是這樣的規(guī)劃會(huì)在將來(lái)的礦井生產(chǎn)中節(jié)省大量通風(fēng)機(jī)的運(yùn)行費(fèi)用。新建礦井往往比進(jìn)行了長(zhǎng)時(shí)間生產(chǎn)的礦井在計(jì)算通風(fēng)效率值上更有優(yōu)勢(shì)。在那些老礦井中,不僅密封條件老化而產(chǎn)生大量漏洞,而且其本身就存在大量煤礦采空區(qū)。當(dāng)處理這些先前為房柱式采煤法或長(zhǎng)壁式采煤法的采空區(qū)時(shí),從法定規(guī)程上講,必須要先用水沖洗礦井巷道,然后將其封住。由于分流到廢棄工作面和被封區(qū)的風(fēng)不計(jì)入有效風(fēng)量。因此,擁有大量舊巷道和密封區(qū)的煤礦往往會(huì)得到一個(gè)相對(duì)較低的通風(fēng)效率值。數(shù)據(jù)分析通風(fēng)系

5、統(tǒng)的數(shù)據(jù)從遍布全國(guó)范圍內(nèi)各地區(qū)的 23 個(gè)煤礦搜集而來(lái),這些地區(qū)主要包括:阿巴拉契亞中部和北部、西肯塔基、伊利諾斯盆地、西山地區(qū)和圣胡安盆地。在這 23 個(gè)煤礦中,有 11 個(gè)煤礦采用的是長(zhǎng)壁采煤法,另外 12 個(gè)煤礦采用的是房、柱式采煤法。這 23 個(gè)煤礦不僅在分布地區(qū)上大相徑庭,而且在規(guī)模- 2 - 上也有很大差異,小到總風(fēng)量為 139700 立方英尺每分鐘的房、柱式煤礦,大到總風(fēng)量為 1150000 立方英尺每分鐘的長(zhǎng)壁式煤礦。這些數(shù)據(jù)制成圖表 1,如下:表一、不同型號(hào)礦井的總風(fēng)量礦井類型礦井總數(shù)最小270.0139.7139.7最大1150.0525.0長(zhǎng)壁式房、柱式合計(jì)1112235

6、51.21150.0下面是從所有煤礦搜集的信息,包括所有計(jì)算通風(fēng)系統(tǒng)效率必需的數(shù)據(jù)。 礦井類型 主要通風(fēng)機(jī)風(fēng)量 最后回風(fēng)石門和回風(fēng)井的風(fēng)量 充電站、機(jī)電硐室及泵房的風(fēng)量總和長(zhǎng)壁式煤礦通風(fēng)系統(tǒng)的效率和房、柱式煤礦通風(fēng)系統(tǒng)的效率有著顯而易見(jiàn)的差異。統(tǒng)計(jì)數(shù)據(jù)顯示,房、柱式采煤法的礦井通風(fēng)系統(tǒng)效率有著較高的平均值。房、柱式采煤法礦井平均利用風(fēng)量占總風(fēng)量的 44.4%,相反,長(zhǎng)壁式采煤法的礦井的利用率只有 33.9%。這個(gè)結(jié)果由圖表 2 顯示如下:表二、不同類型礦井的容積效率礦井類型最小14.5%23.1%最大長(zhǎng)壁式111233.9%44.4%65.0%71.6%房、柱式- 3 - 總計(jì)2314.5%3

7、8.3%71.6%下面的圖表顯示了在不同效率范圍的礦井分布情況。例如,圖表顯示,在20%-30%范圍內(nèi)的礦井?dāng)?shù)最多,為 8 個(gè)。98765Volumetic Effiency Range4321010%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%數(shù)據(jù)一:不同效率值的礦井?dāng)?shù)量分布圖根據(jù)所有煤礦通風(fēng)系統(tǒng)的效率平均值,長(zhǎng)壁式采煤法礦井和房、柱式采煤法礦井都可以用一下圖來(lái)表示其風(fēng)量利用分布。正如我們所預(yù)想的一樣,絕大多數(shù)有效風(fēng)量都用來(lái)為工作面服務(wù),而只有非常少的一部分通風(fēng)用于礦井設(shè)備。下面就是收集到的用于礦井工作設(shè)備的風(fēng)量的清單: 長(zhǎng)壁工作面

8、數(shù)量和連續(xù)工作的礦工組數(shù) 縫隙的平均高度 主要通風(fēng)機(jī)的工作風(fēng)壓 進(jìn)入煤壁的風(fēng) 礦井密封處的大體數(shù)目用于調(diào)查研究的所有收集到的相關(guān)數(shù)據(jù)都支持容積效率和礦井有關(guān)參數(shù)有關(guān)系。最明顯的是全風(fēng)壓時(shí)期的容積效率,一個(gè)可以想到的事實(shí)是高風(fēng)壓將會(huì)產(chǎn)生更多的漏風(fēng)進(jìn)而降低礦井容積效率。下面的圖表闡述了通風(fēng)機(jī)作用和容積效率的 這種關(guān)系。然而,我們必須對(duì)造成通風(fēng)系統(tǒng)效率低下的因素的復(fù)雜性有清楚的認(rèn)識(shí)。如前所述,眾所周知的是高風(fēng)機(jī)風(fēng)壓可以催生更多的漏洞和低通風(fēng)效率。但是,也必須記得的是大型礦井往往擁有最高的風(fēng)壓這一假定,也不得不假設(shè)大型礦井一般會(huì)有更多的密封處(用來(lái)封住那些潛在的漏洞)和大量可能的煤礦采空區(qū)。這些密封處

9、和采空區(qū)仍然需要通風(fēng)和密封。因此,諸多這些因素也在影響風(fēng)機(jī)風(fēng)壓和容積效率的關(guān)系上扮演重要的角色。我們發(fā)現(xiàn)容積效率和縫隙高度、連續(xù)工作礦工組數(shù)、煤礦產(chǎn)量以及煤礦密封數(shù)并沒(méi)有任何必然的聯(lián)系。因此影響通風(fēng)系統(tǒng)效率、漏洞和采空區(qū)漏風(fēng)的主要因素和當(dāng)前所述的參數(shù)并沒(méi)有密切的關(guān)系就不足為奇了??偨Y(jié)本次研究闡述了美國(guó)煤礦通風(fēng)系統(tǒng)的平均效率,大致能夠達(dá)到 38%,但是仍然有相當(dāng)大的提升空間,通風(fēng)效率有望超過(guò) 70%。房柱式采煤法的煤礦通風(fēng)系統(tǒng)效率稍高,大約為 44%,而采用長(zhǎng)壁式采煤法的煤礦這一效率則平均為 34%。較低的通風(fēng)效率一般是由于主要通風(fēng)機(jī)風(fēng)壓過(guò)高所致,這也意味著大型煤礦在提高礦井通風(fēng)系統(tǒng)效率方面面臨

10、更大的挑戰(zhàn)。由于安全是構(gòu)建一個(gè)高效的礦井通風(fēng)系統(tǒng)所要考慮的首要問(wèn)題,所以一個(gè)良好的通風(fēng)系統(tǒng)和合理的通風(fēng)設(shè)計(jì)在高效生產(chǎn)中是必須重點(diǎn)考慮的課題。此外,提高通風(fēng)系統(tǒng)效率對(duì)降低煤礦生產(chǎn)成本也意義非凡。因此,促進(jìn)一個(gè)良好的通風(fēng)系統(tǒng)也能使采礦作業(yè)和活動(dòng)大大受益??梢宰笥彝L(fēng)系統(tǒng)效率高低的因素不僅數(shù)量繁多而且關(guān)系復(fù)雜。從以上研究所得的數(shù)據(jù)來(lái)看,影響通風(fēng)系統(tǒng)效率的因素很明顯不是單方面的。最普通也最常見(jiàn)的因素主要有:礦井漏洞的年久失修、填塞物老化、高風(fēng)機(jī)風(fēng)壓引起的漏風(fēng)、大量采空區(qū)以及密封區(qū)所需的風(fēng)。影響每一個(gè)煤礦通風(fēng)系統(tǒng)效率高低的因素都是上述方面的綜合,因此,如果一個(gè)礦井有提高礦井通風(fēng)系統(tǒng)效率的打算,通風(fēng)系統(tǒng)的

11、設(shè)計(jì)者需要在識(shí)別、期望以及避免這些可能導(dǎo)致通風(fēng)系統(tǒng)效率低下的因素上- 5 - 耗費(fèi)大量的心血。- 6 - COAL MINE VENTILATION EFFICIENCY: ACOMPARISON OF US COALMINE VENTILATION SYSTEMSAbstractWith ever rising energy costs, it is increasingly important for mines to operatewith energy efficiency. As a large portion of a mines energy consumption is oft

12、enattributed to the operation of mine ventilation fans,maintaining an efficient ventilationsystem is a critical pro-active way for mining companies to reduce power costs. Acommon way to measure a mines ventilation system efficiency is to calculate thevolumetric efficiency,which is simply a calculati

13、on of the percentage of total mine airthat is usefully employed for production. The purpose of this study is to document anationwide comparison of the volumetric efficiency of U.S.underground coal miningoperations. The results will aim to show just how efficient todays coal mineventilation systems a

14、re and what factors may be causing their various efficiencies andinefficiencies.Definition of Volumetric EfficiencyMine ventilation volumetric efficiency is defined as the percentage of total mineair that is “usefully employed” for production. There can be room for discrepancieswhen considering what

15、 constitutes being“usefully employed” for air in a mine.McPherson defines air that is usefully employed as “the sum of airflows reaching theworking faces and those used to ventilate equipment such as electrical gear, pumps orbattery charging stations” (McPherson, 1993). Hartman considers usefully em

16、ployedventilation air to be the sum of air at the last open crosscut and belt air(Hartman,1997).For this study, mine air that is considered to be usefully employedconsists of air that is used for ventilating working faces as well as air that is used for- 7 - equipment that is critical to production

17、(such as electrical gear, pumps, batterycharging stations). After determining the total mine air quantity at the main fans andcalculating the summation all air that is usefully employed in a mine, the followingequation can be used for calculating ventilation volumetric efficiency:Equation 1. Volumet

18、ric EfficiencyAirflow UsefulVolumetic Efficiency 100%Total AirflowValues for ventilation volumetric efficiency fall in a wide range. McPherson statesvalues may range from 75% down to 10% (McPherson, 1993). In this study, mineshad efficiency values which fell within the range of 14.5% to 71.6% (shown

19、 below inTable 2). Mines with efficiency values in the lower part of this range indicate thatlarge volumes of air are not being employed effectively, creating a potentially largeand wasteful energy expenseFactors Affecting Efficiency LossThe two most significant factors that can cause lower volumetr

20、ic efficiencyinclude losses from leakage as well as the use of ventilation air to ventilate oldworkings,pillared/gob areas, or seals.Leakage through stoppings and doors can be minimized through goodconstruction and maintenance. However,leakage is certainly inevitable when largenumbers of stoppings a

21、re present in a mine, no matter how well-constructed.Additionally, the potential for leakage naturally increases with fan pressure, so mineswith high operating pressure are more prone to leakage. A reliable method foravoiding leakage in a mine is to minimize connections between entries having flowsi

22、n opposite directions. This can be accomplished by dividing intake and return entrieswith a neutral entry or entries, or by geographically separating intake and returnentries with barrier pillars (McPherson, 1993). This, of course, requires incorporationof ventilation design at the mine planning sta

23、ge, but such planning can save future fanpower costs.Young mines often have a volumetric efficiency advantage over mines that have- 8 - been in operation for a longer period of time. In older mines, not only do stoppingsdeteriorate over time, creating leakage, but more mined-out areas inherently exi

24、st.When dealing with previously pillared or longwalled areas, legally speaking, a minemust either ventilate these areas with bleeder entries or seal them. Since air dedicatedto ventilating old workings and seals does not count as usefully employed air; mineswith large amount of bleeder entries or se

25、als tend to have a lower ventilationefficiency valueData AnalysisVentilation data was gathered from 23 mines from all regions of the country:Central and Northern Appalachia, Western Kentucky, Illinois Basin, WesternMountains and the San Juan Basin. Of the 23 mines, 11 are longwall operations and12 a

26、re Room and Pillar operations. Not only are the studied mines diverse in location,but also in size, as the total mine airflow values range from 139,700 cfm for a smallroom and pillar mine to 1,150,000 cfm for a large longwall operation. These data aretabulated below in Table 1.Table 1. Total Mine In

27、take Air Statistical Data by Mine270.0139.7139.71150.0525.0Room and PillarTotal/Combined332.1551.2231150.0The following information was gathered from all mines; including the necessarydata for calculating ventilation efficiency: mine type main mine fan airflows airflows at last open crosscuts or hea

28、dgates airflows at battery charging stations, electrical equipment and pump stations,etc.Noticeable differences were discovered between ventilation efficiency values for- 9 - longwall mines versus room and pillar mines. The data analysis shows that, onaverage, room and pillar mining operations tend

29、to have higher ventilation efficiencies.The average room and pillar operation usefully employs 44.4% of its total air, asopposed to 33.9% for longwall operations. These results are shown below in Table 2.Table 2.Volumetric Efficiency Statistical Data by Mine14.5%23.1%14.5%The following graph (Figure

30、 1) represents the distribution of mines in the variousranges of volumetric efficiency. For example, the chart shows that there are a largenumber (8) of mining operations between the range of 20% and 30%.98765Volumetic Effiency Range4321010%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%Figure

31、1.Statistical Distribution of Number of Mines in Each V olumetric EfficiencValue RangeBased on average values for all mines, both longwall and room and pillar, thefollowing chart (Figure 2) was created to illustrate the distribution of ventilation air inmines. As one would expect, the majority of us

32、efully employed air is used to ventilate the working areas, while ventilating supporting equipment is notably less.The following is a list of supporting mine data that was gathered: number of longwall and continuous miner production units average seam height main mine fan operating pressures airflow

33、s sweeping mine seals (intake to seal to return configuration) approximate number of seals in mineAll additional supporting data was gathered with the intention of investigating anypossible correlations between volumetric efficiency and other mine performanceparameters. The most obvious correlation

34、occurs when plotting volumetric efficiencyversus total fan pressure. One would expect that higher fan pressure would createhigher volumes of leakage throughout the mine, and reducing volumetric efficiency.The following graph in Figure 3 illustrates this correlation with a power functiontrend-line.Fi

35、gure 3.Volumetric Efficiency vs. Fan PressureHowever, one must keep in mind the complexity of the factors behind a lowventilation efficiency value. As just stated, it is well known that higher fan pressurefacilitates more leakage and lower ventilation efficiency.But keep in mind theassumption could

36、be made that the mines having the highest fan pressures are mostlikely the largest mines. It could also be assumed that the largest mines have thelargest number of stoppings (creating potential leakage) as well as a potentially high- 11 - amount of previously mined-out areas, which are required eith

37、er to be ventilated orsealed. Therefore, it is highly possible that these other factors may have a role in therelationship between fan pressure and volumetric efficiency.No obvious correlationswere discovered between ventilation volumetric efficiency and seam height,number ofproduction units, mine p

38、roduction or number of mine seals. This is not particularlysurprising as the main factors that affect ventilation efficiency, leakage and airventilating old workings, are not highly affected by the previously stated parametersConclusionsThis study illustrates that the average coal mine ventilation s

39、ystem in the UnitedStates is operating with reasonable volumetric efficiency, at approximately 38%, buthas room for improvement as one mine shows that it is possible to reach over 70%efficiency. Room and pillar mines are operating with slightly higher efficiencies ofapproximately 44% while longwall

40、mines are operating with an average efficiency of34%. The lower efficiency value for longwall operations, in combination with thecorrelation of high main mine fan pressure to lower efficiency, illustrates that largermines have the greatest challenges to increase their ventilation efficiency.While safety is the pri

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論