版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知全集,集合,則陰影部分表示的集合是( )ABCD2如圖示,三棱錐的底面是等腰直角三角形,且,則與面所成角的正弦值等于( )ABCD3音樂(lè),是用聲音來(lái)展現(xiàn)美,給人以聽覺(jué)上的享受,熔鑄人們的美學(xué)趣味著名數(shù)學(xué)家傅立葉研究了樂(lè)聲的本質(zhì),他證明了所
2、有的樂(lè)聲都能用數(shù)學(xué)表達(dá)式來(lái)描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音由樂(lè)聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構(gòu)成樂(lè)音的是( )ABCD4某四棱錐的三視圖如圖所示,則該四棱錐的體積為( )ABCD5已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為( )ABCD6觀察下列各式:,根據(jù)以上規(guī)律,則( )ABCD7已知函數(shù),若對(duì)任意的總有恒成立,記的最小值為,則最大值為( )A1BCD8函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象( )A向右平移個(gè)單位B向右平移個(gè)單位
3、C向左平移個(gè)單位D向左平移個(gè)單位9已知集合,集合,若,則( )ABCD10已知平面,直線滿足,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D即不充分也不必要條件11中國(guó)古典樂(lè)器一般按“八音”分類這是我國(guó)最早按樂(lè)器的制造材料來(lái)對(duì)樂(lè)器進(jìn)行分類的方法,最先見(jiàn)于周禮春官大師,分為“金、石、土、革、絲、木、匏(po)、竹”八音,其中“金、石、木、革”為打擊樂(lè)器,“土、匏、竹”為吹奏樂(lè)器,“絲”為彈撥樂(lè)器現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂(lè)器的概率為( )ABCD12若雙曲線的離心率為,則雙曲線的焦距為( )ABC6D8二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)在
4、區(qū)間上的值域?yàn)開.14已知隨機(jī)變量,且,則_15已知函數(shù),在區(qū)間上隨機(jī)取一個(gè)數(shù),則使得0的概率為 16如圖所示,邊長(zhǎng)為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問(wèn)題:(1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率(2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);(3)假設(shè)每個(gè)會(huì)員每
5、星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會(huì)員中隨機(jī)抽取兩位,記從這兩位會(huì)員的消費(fèi)獲得的平均利潤(rùn)之差的絕對(duì)值為,求的分布列及數(shù)學(xué)期望18(12分)已知矩陣,.求矩陣;求矩陣的特征值.19(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)A(1,0)的直線與橢圓C交于點(diǎn)M, N,設(shè)P為橢圓上一點(diǎn),且OM+ON=t20(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,且(1)解關(guān)于的不等式;(2)如果對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍21(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22(10分)
6、已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】先求出集合N的補(bǔ)集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,可得或,又所以.故選:D.【點(diǎn)睛】本題考查了韋恩圖表示集合,集合的交集和補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.2A【解析】首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,可知,同時(shí)易知,所以面
7、,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.3C【解析】由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.4B【解析】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問(wèn)題,是基礎(chǔ)題5A【解析】由題意可
8、知直線過(guò)定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過(guò)定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過(guò)運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.6B【解析】每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,故選:B【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)
9、列的一些項(xiàng)7C【解析】對(duì)任意的總有恒成立,因?yàn)?,?duì)恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對(duì)任意的總有恒成立,對(duì)恒成立,令,可得令,得當(dāng),當(dāng),故令,得 當(dāng)時(shí),當(dāng),當(dāng)時(shí),故選:C.【點(diǎn)睛】本題主要考查了根據(jù)不等式恒成立求最值問(wèn)題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計(jì)算能力,屬于難題.8C【解析】根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,.又時(shí)函數(shù)值最大,所以.又,從而,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)
10、求,一般用最高點(diǎn)或最低點(diǎn)求9A【解析】根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)?,所以?當(dāng)時(shí),不符合題意,當(dāng)時(shí),.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.10A【解析】,是相交平面,直線平面,則“” “”,反之,直線滿足,則或/或平面,即可判斷出結(jié)論【詳解】解:已知直線平面,則“” “”,反之,直線滿足,則或/或平面, “”是“”的充分不必要條件故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力11B【解析】分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同
11、的“兩音”共有種取法;“兩音”中含有打擊樂(lè)器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問(wèn)題的求解,關(guān)鍵是能夠利用組合的知識(shí)求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).12A【解析】依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:雙曲線的離心率為,所以,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域【詳解】,則,.故答案為:【點(diǎn)睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公
12、式),考查正弦函數(shù)的的單調(diào)性和最值求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論140.1【解析】根據(jù)原則,可得,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:隨機(jī)變量,則期望為所以故答案為:【點(diǎn)睛】本題考查正態(tài)分布的計(jì)算,掌握正態(tài)曲線的圖形以及計(jì)算,屬基礎(chǔ)題.15【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得0的概率為考點(diǎn):本小題主要考查與長(zhǎng)度有關(guān)的幾何概型的概率計(jì)算.點(diǎn)評(píng):幾何概型適用于解決一切均勻分布的問(wèn)題,包括“長(zhǎng)度”、“角度”、“面積”、“體積”等,但要注意求概率時(shí)做比的上下“測(cè)度”要一致.16【解析】設(shè),在中利
13、用正弦定理得出關(guān)于的函數(shù),從而可得的最小值【詳解】解:設(shè),則,在中,由正弦定理可得,即,當(dāng)即時(shí),取得最小值故答案為【點(diǎn)睛】本題考查正弦定理解三角形的應(yīng)用,屬中檔題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)(2)22.5(3)見(jiàn)解析,【解析】(1)根據(jù)頻數(shù)計(jì)算頻率,得出概率;(2)根據(jù)優(yōu)惠標(biāo)準(zhǔn)計(jì)算平均利潤(rùn);(3)求出各種情況對(duì)應(yīng)的的值和概率,得出分布列,從而計(jì)算出數(shù)學(xué)期望【詳解】解:(1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率;(2)第1次消費(fèi)利潤(rùn);第2次消費(fèi)利潤(rùn);第3次消費(fèi)利潤(rùn);第4次消費(fèi)利潤(rùn);這4次消費(fèi)獲得的平均利潤(rùn):(3)1次消費(fèi)利潤(rùn)是27,概率是;2次消費(fèi)利潤(rùn)是,概
14、率是;3次消費(fèi)利潤(rùn)是,概率是;4次消費(fèi)利潤(rùn)是,概率是;由題意:故分布列為: 0 期望為: 【點(diǎn)睛】本題考查概率、平均利潤(rùn)、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨(dú)立事件概率乘法公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題18;,.【解析】由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于??碱}.19(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)
15、題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力第一問(wèn),先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時(shí),直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到x1+x2、x1x試題解析:(1)e=22,又S=122a2b=4橢圓C的標(biāo)準(zhǔn)方程為x2(2)由題意知,當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因?yàn)橹本€與橢圓交于兩點(diǎn),所以=16kx又OM因?yàn)辄c(diǎn)P在橢圓x24+即2k又|OM即|NM|4化簡(jiǎn)得:13k4-5k2t2=1-當(dāng)直線MN的斜率不存在時(shí),M(1,62t-1,考點(diǎn)
16、:橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系20(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱可得的表達(dá)式,再去掉絕對(duì)值即可解不等式;(2)對(duì),不等式成立等價(jià)于,去絕對(duì)值得不等式組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱, 原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需, 解得,的取值范圍是.21(1)證明見(jiàn)解析;(2)【解析】(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,可得,則即.【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項(xiàng)公式,考查錯(cuò)位相減求和法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海外國(guó)語(yǔ)大學(xué)《實(shí)驗(yàn)設(shè)計(jì)與分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025商業(yè)銀行借款合同范本模板
- 不良事件分析報(bào)告范文
- 申請(qǐng)報(bào)告書格式范文
- 大學(xué)讀書報(bào)告范文
- 課題申報(bào)書:高校與地方行業(yè)企業(yè)合作新機(jī)制研究
- 課題申報(bào)書:多源政民互動(dòng)數(shù)據(jù)融合的風(fēng)險(xiǎn)事件情景推演與協(xié)同治理研究
- 上海商學(xué)院《服裝材料與服飾禮儀》2023-2024學(xué)年第一學(xué)期期末試卷
- 26西門豹治鄴公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)(2課時(shí))
- 上海立信會(huì)計(jì)金融學(xué)院《智能微電網(wǎng)控制技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 色卡-CBCC中國(guó)建筑標(biāo)準(zhǔn)色卡(千色卡1026色)
- 2024-2030年中國(guó)水產(chǎn)養(yǎng)殖行業(yè)發(fā)展形勢(shì)及投資風(fēng)險(xiǎn)分析報(bào)告
- 建筑工程施工現(xiàn)場(chǎng)消防安全培訓(xùn)
- GB/T 42125.1-2024測(cè)量、控制和實(shí)驗(yàn)室用電氣設(shè)備的安全要求第1部分:通用要求
- 采購(gòu)部門年終總結(jié)報(bào)告
- 藍(lán)精靈課件教學(xué)課件
- 2024年河北省高考?xì)v史試卷(含答案解析)
- 譯林三起小學(xué)英語(yǔ)六年級(jí)上冊(cè)期末復(fù)習(xí)補(bǔ)全對(duì)話短文專題練習(xí)一附答案解析
- 泵站工程設(shè)計(jì)(共138張課件)
- 2024秋期河南開放大學(xué)本科《法律社會(huì)學(xué)》一平臺(tái)無(wú)紙化考試(作業(yè)練習(xí)1至3+我要考試)試題及答案
- 信息素養(yǎng):效率提升與終身學(xué)習(xí)的新引擎學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評(píng)論
0/150
提交評(píng)論