版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知,若,則向量在向量方向的投影為( )ABCD2已知函數(shù),則( )A1B2C3D43如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為( )A12BCD4已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD5從拋物線上一點(diǎn) (點(diǎn)在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點(diǎn)為,則直線的斜率為( )ABCD6某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量
3、(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15 m3的住戶的戶數(shù)為( )A10B50C60D1407函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為( )ABCD8記為等差數(shù)列的前項和.若,則( )A5B3C12D139已知,則的值構(gòu)成的集合是( )ABCD10已知集合,則( )ABCD11已知直線過圓的圓心,則的最小值為( )A1B2C3D412半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示
4、,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知拋物線的焦點(diǎn)和橢圓的右焦點(diǎn)重合,直線過拋物線的焦點(diǎn)與拋物線交于、兩點(diǎn)和橢圓交于、兩點(diǎn),為拋物線準(zhǔn)線上一動點(diǎn),滿足,當(dāng)面積最大時,直線的方程為_.14某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是_ .(用數(shù)字作答)15記Sk1k+2k+3k+nk,當(dāng)k1,2,3,時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6
5、n5n4+Bn2,可以推測,AB_16已知,是平面向量,是單位向量.若,且,則的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)的定義域為.(1)求實數(shù)的取值范圍;(2)設(shè)實數(shù)為的最小值,若實數(shù),滿足,求的最小值.18(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、所對邊分別為、,若且,求面積的取值范圍.19(12分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項和為,證明:.20(12分)甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三
6、名同學(xué)答對的概率分別是,且這六名同學(xué)答題正確與否相互之間沒有影響(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望21(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.22(10分)某中學(xué)準(zhǔn)備組建“文科”興趣特長社團(tuán),由課外活動小組對高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計,將數(shù)據(jù)按照,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為
7、“理科方向”學(xué)生.理科方向文科方向總計男110女50總計(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值: 0.100.050.0250.0100.0050.001 2.7063.8415.0246.6357.87910.828參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析
8、】由,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】, 向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題2C【解析】結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.3C【解析】過作于,連接,易知,從而可證平面,進(jìn)而可知,當(dāng)最大時,取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當(dāng)最大時,取得最大值,取的中點(diǎn),則,所以,因為,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長軸
9、長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.4C【解析】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得, 三棱柱的兩底面中心連線
10、的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.5A【解析】根據(jù)拋物線的性質(zhì)求出點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),代入斜率公式即可求解.【詳解】設(shè)點(diǎn)的坐標(biāo)為,由題意知,焦點(diǎn),準(zhǔn)線方程,所以,解得,把點(diǎn)代入拋物線方程可得,因為,所以,所以點(diǎn)坐標(biāo)為,代入斜率公式可得,.故選:A【點(diǎn)睛】本題考查拋物線的性質(zhì),考查運(yùn)算求解能力;屬于基礎(chǔ)題.6C【解析】從頻率分布直方圖可知,用水量超過15m的住戶的頻率為,即分層抽樣的50戶中有0.350=15戶住戶的用水量超過15立
11、方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C7A【解析】求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.8B【解析】由題得,解得,計算可得.【詳解】,解得,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運(yùn)算求解能力.9C【解析】對分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式
12、的化簡,誘導(dǎo)公式,分類討論,屬于基本題.10B【解析】求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.11D【解析】圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值【詳解】圓的圓心為,由題意可得,即,則,當(dāng)且僅當(dāng)且即時取等號,故選:【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題12D【解析】根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該
13、幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點(diǎn)截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)均值不等式得到,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,(當(dāng)且僅當(dāng),等號成立),直線的傾斜角為,直線的方程為.故答案為:.【點(diǎn)睛】本題
14、考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.14【解析】基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率【詳解】解:某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是故答案為:【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題15【解析】觀察知各
15、等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),A,A1,解得B,所以AB故答案為:【點(diǎn)睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.16【解析】先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解【詳解】由是單位向量若,設(shè),則,又,則,則,則,又,所以,(當(dāng)或時取等)即的取值范圍是,故答案為:,【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對這些知識的理解掌握水平三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)【解析】(
16、1)首先通過對絕對值內(nèi)式子符號的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數(shù)定義域為,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時,有最大值為4,即;(2)由(1)知,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),時,等號成立【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.18(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定
17、理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,解得.由余弦定理得,又,當(dāng)且僅當(dāng)時取等號,所以,的面積.【點(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應(yīng)用,考查計算能力,屬于中等題.19(1);(2)證明見解析.【解析】(1),分,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時,方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時,方程有兩個不等
18、實根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計算能力,是一道難題.20(1)(2)分布列見解析,期望為20【解析】利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得, (2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 4教育信息化與信息化人才培養(yǎng)
- 單板加工市場風(fēng)險識別與應(yīng)對措施考核試卷
- 2025年度臨床試驗合同主體臨床試驗合同續(xù)簽與變更4篇
- 2025版學(xué)生暑假工就業(yè)保障及培訓(xùn)合同3篇
- 2025年增資協(xié)議簽署注意事項
- 2025年健身營銷推廣合同
- 2025年健身器材產(chǎn)品責(zé)任保險合同
- 二零二五年度戶外木飾面景觀工程設(shè)計合同2篇
- 二零二五版電影主題展覽贊助協(xié)議3篇
- 二零二五年度2025安保員聘用及安全教育培訓(xùn)服務(wù)合同3篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網(wǎng)申辦具體流程
- 建筑勞務(wù)專業(yè)分包合同范本(2025年)
- 企業(yè)融資報告特斯拉成功案例分享
- 五年(2020-2024)高考地理真題分類匯編(全國版)專題12區(qū)域發(fā)展解析版
- 《阻燃材料與技術(shù)》課件 第8講 阻燃木質(zhì)材料
- 新急救常用儀器設(shè)備操作流程
- 北侖區(qū)建筑工程質(zhì)量監(jiān)督站監(jiān)督告知書
- 法考客觀題歷年真題及答案解析卷一(第1套)
- 央國企信創(chuàng)白皮書 -基于信創(chuàng)體系的數(shù)字化轉(zhuǎn)型
- 6第六章 社會契約論.電子教案教學(xué)課件
評論
0/150
提交評論