2022屆河南省南陽市高三下學期第五次調研考試數(shù)學試題含解析_第1頁
2022屆河南省南陽市高三下學期第五次調研考試數(shù)學試題含解析_第2頁
2022屆河南省南陽市高三下學期第五次調研考試數(shù)學試題含解析_第3頁
2022屆河南省南陽市高三下學期第五次調研考試數(shù)學試題含解析_第4頁
2022屆河南省南陽市高三下學期第五次調研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,則a,b,c的大小關系為( )ABCD2設數(shù)列是等差數(shù)列,.則這個數(shù)列的前7項和等于( )A12B21C24D363執(zhí)行如圖所

2、示的程序框圖,如果輸入,則輸出屬于( )ABCD4甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是( )A甲B乙C丙D丁5已知函數(shù),其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為( )ABCD6已知實數(shù),則的大小關系是()ABCD7若雙曲線的離心率為,則雙曲線的焦距為( )ABC6D88如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有( )A2對B3對C4對D5對9已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是( )ABCD110

3、正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為( )ABCD11在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是26.7,天狼星的星等是1.45,則太陽與天狼星的亮度的比值為( )A1010.1B10.1Clg10.1D1010.112根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是( )A至少有一個樣本點落在回歸直線上B若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C對所有的解釋變量(),的值一定與有誤差D若回歸直線的斜率,則變量x與y正相關

4、二、填空題:本題共4小題,每小題5分,共20分。13若實數(shù),滿足,則的最小值為_14若實數(shù)滿足不等式組,則的最小值是_15已知等比數(shù)列滿足公比,為其前項和,構成等差數(shù)列,則_16在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.()由以上數(shù)據(jù)繪制成22聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計

5、合格不合格總計()從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.828 18(12分)如圖,在多面體中,四邊形是菱形,平面,是的中點.()求證:平面平面;()求直線與平面所成的角的正弦值.19(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.()求橢圓的標準方程;()設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.20(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標

6、方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.21(12分)在三棱錐中,是邊長為的正三角形,平面平面,M、N分別為、的中點.(1)證明:;(2)求三棱錐的體積.22(10分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)f(x)為偶函數(shù)便可求出m0,從而f(x)1,根據(jù)此函數(shù)的奇偶性與單調性即可作出判斷.【詳解】解:f(x)為偶函數(shù);f(x)f(x);11;|x

7、m|xm|;(xm)2(xm)2;mx0;m0;f(x)1;f(x)在0,+)上單調遞增,并且af(|)f(),bf(),cf(2);02;acb故選B【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間0,+)上,根據(jù)單調性去比較函數(shù)值大小2B【解析】根據(jù)等差數(shù)列的性質可得,由等差數(shù)列求和公式可得結果.【詳解】因為數(shù)列是等差數(shù)列,所以,即,又,所以,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質,等差數(shù)列的和,屬于中檔題.3B【解析】由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,

8、當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.4C【解析】分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說

9、的是真話,故丙在說謊,年紀最大的也不是乙;假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.5A【解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是減函數(shù),(1,+)上是增函數(shù),故當x=1

10、時,y有最小值10=1,而exa+4eax4,(當且僅當exa=4eax,即x=a+ln1時,等號成立);故f(x)g(x)3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=1,即a=1ln1故選:A6B【解析】根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調性即可得出【詳解】解:,故選:B【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于基礎題7A【解析】依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:雙曲線的離心率為,所以,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.8C【解析】畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平

11、面,平面平面,從而可選出答案【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作POAD于O,則有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題9B【解析】先根據(jù)導數(shù)的幾何意義寫出 在 兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數(shù) ,結合導數(shù)求出最小值,即可選出正確答案.

12、【詳解】解:當 時,則;當時,則.設 為函數(shù)圖像上的兩點,當 或時,不符合題意,故.則在 處的切線方程為;在 處的切線方程為.由兩切線重合可知 ,整理得.不妨設則 ,由 可得則當時, 的最大值為.則在 上單調遞減,則.故選:B.【點睛】本題考查了導數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出 和 的函數(shù)關系式.本題的易錯點是計算.10C【解析】如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,故,設球半徑為,則,解得,故.故選:.【點睛】

13、本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.11A【解析】由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識信息處理能力閱讀理解能力以及指數(shù)對數(shù)運算.12D【解析】對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正

14、相關,故D正確故選D【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由約束條件先畫出可行域,然后求目標函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數(shù),結合圖形求出最值,需要掌握解題方法.14-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-1150【解析】利用等差中項以及

15、等比數(shù)列的前項和公式即可求解.【詳解】由,是等差數(shù)列可知因為,所以,故答案為:0【點睛】本題考查了等差中項的應用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.16【解析】點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17()填表見解析,有95%以上的把握認為“性別”與“問卷結果”有關; ()分布列見解析,【解析】()根據(jù)莖葉圖填寫列聯(lián)表,計算得到答案.(),計算,得到分布列,再計算數(shù)學期

16、望得到答案.【詳解】()根據(jù)莖葉圖可得:男女總計合格101626不合格10414總計202040,故有95%以上的把握認為“性別”與“問卷結果”有關.()從莖葉圖可知,成績在60分以下(不含60分)的男女學生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,012.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的綜合應用能力.18 ()詳見解析;()【解析】試題分析:()連接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,證得結論;()如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量 ,利用向量和向量夾角公式,即可求解與平面所成角的正弦值試題解析:()

17、連接BD交AC于O,易知O是BD的中點,故OG/BE,BE面BEF,OG在面BEF外,所以OG/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG面BEF;()如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則, , , ,設面ABF的法向量為,依題意有,令,直線AD與面ABF成的角的正弦值是 19();().【解析】()利用勾股定理結合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;()設點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達定理與弦長公式求出,利用幾何法

18、求得直線截圓所得弦長,可得出關于的函數(shù)表達式,利用不等式的性質可求得的取值范圍.【詳解】()在橢圓上, ,又,橢圓的標準方程為;()設點、,聯(lián)立消去,得,則,設圓的圓心到直線的距離為,則.,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.20(1):,:;(2)【解析】(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標方程和直角坐標方程互化的公式即可得曲線的直角坐標方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標方程為;(2)曲線即,圓心到直線的距離,所以,又 點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數(shù)方程、極坐標方程和直角坐標方程的互化,考查了直線與圓的位置關系,屬于中檔題.21(1)證明見解析;(2).【解析】(1)取 中點,連接,證明平面,由線面垂直的性質可得;(2)由,即可求得三棱錐的體積【詳解】解:(1)證明:取中點D,連接,.因為,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,平面平面,平面,所以平面,又因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論