勾股定理證明及應(yīng)用-完整版PPT_第1頁
勾股定理證明及應(yīng)用-完整版PPT_第2頁
勾股定理證明及應(yīng)用-完整版PPT_第3頁
勾股定理證明及應(yīng)用-完整版PPT_第4頁
勾股定理證明及應(yīng)用-完整版PPT_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、勾股定理 讀一讀 我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.圖1-1稱為“弦圖”,最早是由三國時期的數(shù)學(xué)家趙爽在為周髀算經(jīng)作法時給出的.圖1-2是在北京召開的2002年國際數(shù)學(xué)家大會(TCM2002)的會標(biāo),其圖案正是“弦圖”,它標(biāo)志著中國古代的數(shù)學(xué)成就. 圖1-1圖1-2 勾股定理(1)看一看 相傳2500年前,一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)們,我們也來觀察下面的圖案,看看你能發(fā)現(xiàn)什么?ABCABC(圖中每個小方格代表一個單位面積)圖2-1圖2-2(1)觀察圖2-1 正方形A中含有 個小方格,即A的面

2、積是 個單位面積。 正方形B的面積是 個單位面積。正方形C的面積是 個單位面積。99918你是怎樣得到上面的結(jié)果的?與同伴交流交流。ABCABC(圖中每個小方格代表一個單位面積)圖2-1圖2-2分“割”成若干個直角邊為整數(shù)的三角形(單位面積)ABCABC(圖中每個小方格代表一個單位面積)圖2-1圖2-2(單位面積)把C“補” 成邊長為6的正方形面積的一半ABCABC(圖中每個小方格代表一個單位面積)圖2-1圖2-2(2)在圖2-2中,正方形A,B,C中各含有多少個小方格?它們的面積各是多少?(3)你能發(fā)現(xiàn)圖2-1中三個正方形A,B,C的面積之間有什么關(guān)系嗎? SA+SB=SC 即:兩條直角邊上

3、的正方形面積之和等于 斜邊上的正方形的面積ABC圖3-1ABC圖3-2分割成若干個直角邊為整數(shù)的三角形(面積單位)一般的直角三角形三邊為邊作正方形ABC圖3-1ABC圖3-2把C“補”成邊長為7的正方形面積加1單位面積的一半(面積單位)思考:面積A,B,C還有上述關(guān)系嗎?ABC圖3-1ABC圖3-2(1)你能用三角形的邊長表示正方形的面積嗎?(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?與同伴進行交流。議一議 ABCacbSa+Sb=Sc 觀察所得到的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?猜想:兩直角邊a、b與斜邊c 之間的關(guān)系?a2+b2=c2acb 觀察所得到的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?猜想兩直角邊

4、a、b與斜邊c 之間的關(guān)系?a2+b2=c2Sa+Sb=Sca2+b2=c2acb 直角三角形兩直角邊的平方和等于斜邊的平方.勾股弦 勾股定理(畢達哥拉斯定理) 兩千多年前,古希臘有個哥拉 斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國外人們通常稱勾股定理為畢達哥拉斯年希臘曾經(jīng)發(fā)行了一枚紀(jì)念票。定理。為了紀(jì)念畢達哥拉斯學(xué)派,1955勾 股 世 界國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前,國家之一。早在三千多年前 兩千多年前,古希臘有個畢達哥拉斯學(xué)派,他們首先發(fā)現(xiàn)

5、了勾股定理,因此在國外人們通常稱勾股定理為畢達哥拉斯定理。為了紀(jì)念畢達哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。 我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作周髀算經(jīng)中。1.求下列圖中表示邊的未知數(shù)x、y、z的值.81144xyz做一做625576144169做一做: P625400P的面積 =_225BACAB=_AC=_BC=_25152011美麗的勾股樹 商高是公元前11世紀(jì)的中國人。當(dāng)時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰(zhàn)國時期西漢的數(shù)學(xué)著作 周髀 算經(jīng)中記錄著商高同周公的一段對話。商高說:“故折矩,勾廣三,股修四,經(jīng)隅五。” 后來人們就簡單地把這個事實說成“勾三股四弦五”。這就是著名的勾股定理. 這幅圖是由三國時期的數(shù)學(xué)家趙爽在為周髀算經(jīng)作注時給出的“趙爽弦圖”,表明了我國古人對數(shù)學(xué)的鉆研精神和聰明才智,它是我國古代數(shù)學(xué)的驕傲,正因為此,這個圖案被選為2002年在北京召開的世界數(shù)學(xué)家大會的會徽。請欣賞勾股史話 1876年4月1日,伽菲爾德在新英格蘭教育日志上發(fā)表了他對勾股定理這一證法。1881年,伽菲爾德就任美國第20任總統(tǒng)。后來,人們?yōu)榱思o(jì)念他對勾股定理直觀、簡捷、易懂、明了的證明,就

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論