




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高二下數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回2答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置3請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效5如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題
2、目要求的。1曲線作線性變換后得到的回歸方程為,則函數(shù)的單調(diào)遞增區(qū)間為( )ABCD2已知命題p:函數(shù)的值域?yàn)镽;命題q:函數(shù)是R上的減函數(shù)若p或q為真命題,p且q為假命題,則實(shí)數(shù)a的取值范圍是( )ABCD或3已知集合,則中所含元素的個(gè)數(shù)為( )ABCD4已知的二項(xiàng)展開(kāi)式中常數(shù)項(xiàng)為1120,則實(shí)數(shù)的值是( )AB1C或1D不確定5若復(fù)數(shù)(為虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)( )ABCD6若兩個(gè)正實(shí)數(shù)滿足,且恒成立,則實(shí)數(shù)的取值范圍是()ABCD7已知函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),當(dāng)時(shí),若,則的大小關(guān)系是ABCD8某個(gè)幾何體的三視圖如圖所示(其中正視圖中的圓弧是半徑為2的半圓),則該幾何體的體積為( )AB
3、CD9函數(shù)的單調(diào)增區(qū)間是 ( )ABCD10在一組數(shù)據(jù)為,(,不全相等)的散點(diǎn)圖中,若這組樣本數(shù)據(jù)的相關(guān)系數(shù)為,則所有的樣本點(diǎn)滿足的方程可以是( )ABCD11某工廠生產(chǎn)的零件外直徑(單位:)服從正態(tài)分布,今從該廠上午、下午生產(chǎn)的零件中各隨機(jī)取出一個(gè),測(cè)得其外直徑分別為和,則可認(rèn)為( )A上、下午生產(chǎn)情況均正常B上午生產(chǎn)情況異常,下午生產(chǎn)情況正常C上、下午生產(chǎn)情況均異常D上午生產(chǎn)情況正常,下午生產(chǎn)情況異常12已知全集,集合,則圖中陰影部分表示的集合為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13化簡(jiǎn)_14已知函數(shù),則_.15已知函數(shù),的最大值為,則實(shí)數(shù)的值為_(kāi)16已知命題“
4、,”為假命題,則的取值范圍是_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)(1)試討論在極值點(diǎn)的個(gè)數(shù);(2)若函數(shù)的兩個(gè)極值點(diǎn)為,且,為的導(dǎo)函數(shù),設(shè),求實(shí)數(shù)的取值范圍18(12分)如圖,已知在四棱錐中,為中點(diǎn),平面平面,(1)求證:平面平面;(2)求二面角的余弦值19(12分)已知函數(shù).(1)解不等式;(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)a的取值范圍.20(12分)2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子500米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.某
5、高校為調(diào)查該校學(xué)生在冬奧會(huì)期間累計(jì)觀看冬奧會(huì)的時(shí)間情況,收集了200位男生、100位女生累計(jì)觀看冬奧會(huì)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).又在100位女生中隨機(jī)抽取20個(gè)人,已知這20位女生的數(shù)據(jù)莖葉圖如圖所示. (I)將這20位女生的時(shí)間數(shù)據(jù)分成8組,分組區(qū)間分別為,完成頻率分布直方圖;(II)以(I)中的頻率作為概率,求1名女生觀看冬奧會(huì)時(shí)間不少于30小時(shí)的概率;(III)以(I)中的頻率估計(jì)100位女生中累計(jì)觀看時(shí)間小于20個(gè)小時(shí)的人數(shù),已知200位男生中累計(jì)觀看時(shí)間小于20小時(shí)的男生有50人.請(qǐng)完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.男生女生總
6、計(jì)累計(jì)觀看時(shí)間小于20小時(shí)累計(jì)觀看時(shí)間小于20小時(shí)總計(jì)300附:().21(12分)如圖,在四棱錐中,底面為矩形,平面,為棱的中點(diǎn),.(1)證明:平面.(2)求二面角的余弦值.22(10分)在直角坐標(biāo)系中,斜率為k的動(dòng)直線l過(guò)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)若直線l與曲線C有兩個(gè)交點(diǎn),求這兩個(gè)交點(diǎn)的中點(diǎn)P的軌跡關(guān)于參數(shù)k的參數(shù)方程;(2)在條件(1)下,求曲線的長(zhǎng)度.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】分析:令,對(duì)函數(shù)進(jìn)行二次擬合得出a,b的值,代入計(jì)算即
7、可.詳解:令,解得,開(kāi)口向上,的單調(diào)遞增區(qū)間為.故選D.點(diǎn)睛:本題考查了非線性相關(guān)的二次擬合問(wèn)題,選擇對(duì)數(shù)變換是關(guān)鍵.2、C【解析】分別求命題為真命題時(shí)的范圍,命題為真命題時(shí)的范圍;根據(jù)或?yàn)檎婷},且為假命題,得到命題,中有一個(gè)真命題,一個(gè)假命題,分命題為真命題且命題為假命題和命題為真命題且命題為假命題兩類(lèi)求出的范圍【詳解】解:命題為真時(shí),即真數(shù)部分能夠取到大于零的所有實(shí)數(shù),故二次函數(shù)的判別式,從而;命題為真時(shí),解得若或?yàn)檎婷},且為假命題,故和中只有一個(gè)是真命題,一個(gè)是假命題若為真,為假時(shí),無(wú)解;若為假,為真時(shí),解得;綜上可得,故選:【點(diǎn)睛】本題考查根據(jù)復(fù)合命題的真假得到構(gòu)成其簡(jiǎn)單命題的真假
8、情況,屬于中檔題3、D【解析】列舉法得出集合,共含個(gè)元素故答案選4、C【解析】列出二項(xiàng)展開(kāi)式的通項(xiàng)公式,可知當(dāng)時(shí)為常數(shù)項(xiàng),代入通項(xiàng)公式構(gòu)造方程求得結(jié)果.【詳解】展開(kāi)式的通項(xiàng)為:令,解得:,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)二項(xiàng)展開(kāi)式指定項(xiàng)的系數(shù)求解參數(shù)值的問(wèn)題,屬于基礎(chǔ)題.5、D【解析】通過(guò)復(fù)數(shù)是純虛數(shù)得到,得到,化簡(jiǎn)得到答案.【詳解】復(fù)數(shù)(為虛數(shù)單位)是純虛數(shù) 故答案選D【點(diǎn)睛】本題考查了復(fù)數(shù)的計(jì)算,屬于基礎(chǔ)題型.6、D【解析】將代數(shù)式與相乘,展開(kāi)后利用基本不等式求出的最小值,然后解不等式,可得出實(shí)數(shù)的取值范圍【詳解】由基本不等式得,當(dāng)且僅當(dāng),由于,即當(dāng)時(shí),等號(hào)成立,所以,的最小值為,
9、由題意可得,即,解得,因此,實(shí)數(shù)的取值范圍是,故選D.【點(diǎn)睛】本題考查不等式恒成立問(wèn)題,考查利用基本不等式求最值,對(duì)于不等式成立的問(wèn)題,需要結(jié)合量詞來(lái)決定所選擇的最值,考查計(jì)算能力,屬于中等題7、D【解析】函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),所以為偶函數(shù),當(dāng)時(shí),函數(shù)單增,;,,因?yàn)?且函數(shù)單增,故,即,故選D.8、A【解析】試題分析:由三視圖可知該幾何體的體積等于長(zhǎng)方體體積和半個(gè)圓柱體積之和,考點(diǎn):三視圖與體積9、A【解析】求導(dǎo),并解不等式可得出函數(shù)的單調(diào)遞增區(qū)間。【詳解】,令,得或,因此,函數(shù)的單調(diào)遞增區(qū)間為,故選:A?!军c(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,求函數(shù)單調(diào)區(qū)間有以下幾種方法:(1)基本性
10、質(zhì)法;(2)圖象法;(3)復(fù)合函數(shù)法;(4)導(dǎo)數(shù)法。同時(shí)要注意,函數(shù)同類(lèi)單調(diào)區(qū)間不能合并,中間用逗號(hào)隔開(kāi)。10、A【解析】根據(jù)相關(guān)系數(shù)的概念即可作出判斷.【詳解】這組樣本數(shù)據(jù)的相關(guān)系數(shù)為,這一組數(shù)據(jù),線性相關(guān),且是負(fù)相關(guān), 可排除D,B,C,故選A【點(diǎn)睛】本題考查了相關(guān)系數(shù),考查了正相關(guān)和負(fù)相關(guān),考查了一組數(shù)據(jù)的完全相關(guān)性,是基礎(chǔ)的概念題11、D【解析】根據(jù)生產(chǎn)的零件外直徑符合正態(tài)分布,根據(jù)原則,寫(xiě)出零件大多數(shù)直徑所在的范圍,把所得的范圍,同兩個(gè)零件的外直徑進(jìn)行比較,得到結(jié)論.【詳解】解:零件外直徑,根據(jù)原則,在與之外時(shí)為異常.上、下午生產(chǎn)的零件中各隨機(jī)取出一個(gè),測(cè)得其外直徑分別為和,下午生產(chǎn)
11、的產(chǎn)品異常,故選:D.【點(diǎn)睛】本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查原則,屬于基礎(chǔ)題.12、D【解析】分析:先求出A集合,然后由圖中陰影可知在集合A中出去A,B的交集部分即可.詳解:由題得:所以故有題中陰影部分可知:陰影部分表示的集合為故選D.點(diǎn)睛:考查集合的交集和補(bǔ)集,對(duì)定義的理解是解題關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:利用二項(xiàng)式逆定理即可.詳解:(展開(kāi)式實(shí)部)(展開(kāi)式實(shí)部).故答案為:.點(diǎn)睛:本題考查二項(xiàng)式定理的逆應(yīng)用,考查推理論證能力.14、1【解析】先求內(nèi)層函數(shù)的值,解得函數(shù)值為2,再將2代入求值即可【詳解】當(dāng)時(shí),滿足對(duì)應(yīng)
12、的表達(dá)式,先求內(nèi)層函數(shù),當(dāng)時(shí),滿足對(duì)應(yīng)的表達(dá)式,再求,所以【點(diǎn)睛】分段函數(shù)求值問(wèn)題需注意先求解內(nèi)層函數(shù),再依次求解外層函數(shù),每一個(gè)括號(hào)內(nèi)對(duì)應(yīng)的值都必須在定義域?qū)?yīng)的區(qū)間內(nèi)進(jìn)行求值15、【解析】求導(dǎo)后,若,則,可驗(yàn)證出不合題意;當(dāng)時(shí),求解出的單調(diào)性,分別在,三種情況下通過(guò)最大值取得的點(diǎn)構(gòu)造關(guān)于最值的方程,解方程求得結(jié)果.【詳解】由題意得:當(dāng)時(shí),則在上單調(diào)遞增,解得:,不合題意,舍去當(dāng)時(shí),令,解得:,可知在,上單調(diào)遞減;在上單調(diào)遞增當(dāng),即時(shí),解得:,不合題意,舍去當(dāng),即時(shí),解得:當(dāng),即時(shí)解得:,不合題意,舍去綜上所述:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)函數(shù)的最值求解參數(shù)值的問(wèn)題,關(guān)鍵是對(duì)于含有參數(shù)
13、的函數(shù),通過(guò)對(duì)極值點(diǎn)位置的討論確定最值取得的點(diǎn),從而可利用最值構(gòu)造出方程,求解出參數(shù)的取值范圍.16、【解析】分析:先根據(jù)命題真假得恒成立,即得的最大值.詳解:因?yàn)槊}為假命題,所以恒成立,所以的最大值.點(diǎn)睛:根據(jù)命題與命題否定的真假性關(guān)系進(jìn)行轉(zhuǎn)化,即特稱(chēng)命題為假命題,則對(duì)應(yīng)全稱(chēng)命題為真命題,再根據(jù)恒成立知識(shí)轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】(1)對(duì)函數(shù)求導(dǎo),討論導(dǎo)函數(shù)的正負(fù),即可得到函數(shù)的單調(diào)性,從而可求出極值的個(gè)數(shù);(2)先求出函數(shù)的表達(dá)式,進(jìn)而可得到極值點(diǎn)的關(guān)系,可用來(lái)表示及,代入的表達(dá)式,然后構(gòu)造函數(shù)
14、關(guān)于的函數(shù),求出值域即可.【詳解】解:(1)易知定義域?yàn)椋?當(dāng)時(shí),恒成立,在為增函數(shù),沒(méi)有極值點(diǎn);當(dāng)時(shí),恒成立,在為增函數(shù),沒(méi)有極值點(diǎn);當(dāng)時(shí),由,令得,令得,則在上單調(diào)遞減,在單調(diào)遞增,故只有一個(gè)極大值點(diǎn),沒(méi)有極小值點(diǎn);當(dāng)時(shí),由,令得,令得,則在上單調(diào)遞增,在單調(diào)遞減,故只有一個(gè)極小值點(diǎn),沒(méi)有極大值點(diǎn).(2)由條件得且有兩個(gè)根,滿足,或,因?yàn)椋?,故符合題意.因?yàn)楹瘮?shù)的對(duì)稱(chēng)軸,所以.,則,因?yàn)?,所以,令,則,顯然在上單調(diào)遞減,在單調(diào)遞增,則.故的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問(wèn)題,考查了函數(shù)的單調(diào)性與最值,考查了轉(zhuǎn)化思想與分類(lèi)討論思想,屬于難題.18、(1)見(jiàn)解析;(2
15、)【解析】分析:(1)由勾股定理可得,可得平面,于是,由正三角形的性質(zhì)可得,可得底面,從而可得結(jié)果;(2)以為,過(guò)作的垂線為建立坐標(biāo)系,利用向量垂直數(shù)量積為零列方程組,求出平面的一個(gè)法向量與平面的一個(gè)法向量,利用空間向量夾角余弦公式可求出二面角的余弦值.詳解:(1)證明:,平面平面,兩平面的交線為 平面,為中點(diǎn),梯形中與相交 底面,平面平面(2)如圖建立空間直角坐標(biāo)系,則,設(shè)平面的一個(gè)法向量為,平面的法向量為,則由可得取,得,即,由可得取,得,即,故二面角的余弦值為點(diǎn)睛:空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向
16、量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.19、(1);(2).【解析】(1)分別在、去除絕對(duì)值符號(hào)可得到不等式;綜合各個(gè)不等式的解集可求得結(jié)果;(2)根據(jù)的范圍可轉(zhuǎn)化為在上恒成立,通過(guò)分離變量可得,通過(guò)求解最大值可得到結(jié)果.【詳解】(1)當(dāng)時(shí),解集為當(dāng)時(shí),解得:當(dāng)時(shí),解得:綜上所述,的解集為:(2)當(dāng)時(shí),不等式可化為:,即:當(dāng)時(shí),當(dāng),即時(shí), 即的取值范圍為:【點(diǎn)睛】本題考查絕對(duì)值不等式的求解、含絕對(duì)值不等式的恒成立問(wèn)題的求解;解絕對(duì)值不等式的關(guān)鍵是能夠通過(guò)分類(lèi)討論的方式得到函數(shù)在每個(gè)
17、區(qū)間上的解析式;常用的恒成立問(wèn)題的處理方法是通過(guò)分離變量的方式將問(wèn)題轉(zhuǎn)化為所求變量與函數(shù)最值之間的關(guān)系.20、 (1)見(jiàn)解析.(2).(3)列聯(lián)表見(jiàn)解析;有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.【解析】分析:(1)根據(jù)提干莖葉圖數(shù)據(jù)計(jì)算得到相應(yīng)的頻率,從而得到頻率分布直方圖;(2). 因?yàn)椋?)中的頻率為,以頻率估計(jì)概率;(3)補(bǔ)充列聯(lián)表,計(jì)算得到卡方值即可做出判斷.詳解:(1)由題意知樣本容量為20,頻率分布直方圖為:(2)因?yàn)椋?)中的頻率為,所以1名女生觀看冬奧會(huì)時(shí)間不少于30小時(shí)的概率為.(3)因?yàn)椋?)中的頻率為,故可估計(jì)100位女生中累計(jì)觀看時(shí)間小于20小時(shí)的人
18、數(shù)是.所以累計(jì)觀看時(shí)間與性別列聯(lián)表如下:男生女生總計(jì)累計(jì)觀看時(shí)間小于20小時(shí)504090累計(jì)觀看時(shí)間小于20小時(shí)15060210總計(jì)200100300結(jié)合列聯(lián)表可算得所以,有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.點(diǎn)睛:這個(gè)題目考查了頻率分布直方圖的畫(huà)法,頻率和概率的關(guān)系,和卡方的計(jì)算和應(yīng)用;條形分布直方圖常見(jiàn)的應(yīng)用有:計(jì)算中位數(shù),眾數(shù),均值等.21、(1)見(jiàn)證明;(2)【解析】(1)先由平面得到面PDC平面,可得平面,則有,再利用勾股數(shù)及等腰三角形可得,可證得平面,即證得結(jié)論.(2)以D為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系Dxyz,利用向量法能求出二面角PAED的余弦值【詳解】(1)取的中點(diǎn),連接
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市基礎(chǔ)設(shè)施安保策略計(jì)劃
- 學(xué)期末評(píng)估與反思機(jī)制計(jì)劃
- 學(xué)校秋季教學(xué)工作總結(jié)計(jì)劃
- 存 貨教學(xué)課件
- 寵物殯葬師的應(yīng)急預(yù)案制定試題及答案
- 投資回報(bào)率計(jì)算方法試題及答案
- 2024年經(jīng)濟(jì)全球化影響試題及答案
- 信息技術(shù)支持的物流決策流程及試題及答案
- 小兒心肺復(fù)蘇健康教育
- 創(chuàng)新學(xué)習(xí)2024年陪診師考試試題及答案探討
- AQ2012-2007 石油天然氣安全規(guī)程
- 維克多高中英語(yǔ)3500詞匯
- 除草機(jī)器人簡(jiǎn)介
- 2015-2022年蘇州信息職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文/數(shù)學(xué)/英語(yǔ)筆試參考題庫(kù)含答案解析
- 高中音樂(lè)鑒賞 第一單元 學(xué)會(huì)聆聽(tīng) 第一節(jié)《音樂(lè)要素及音樂(lè)語(yǔ)言》
- 當(dāng)代文學(xué)第一章1949-1966年的文學(xué)思潮
- GB/T 25254-2022工業(yè)用聚四亞甲基醚二醇(PTMEG)
- GB/T 24456-2009高密度聚乙烯硅芯管
- GB 6222-2005工業(yè)企業(yè)煤氣安全規(guī)程
- 中國(guó)藥典2015年版
- PLM解決方案與NX培訓(xùn)教材課件
評(píng)論
0/150
提交評(píng)論