版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第6講 立體幾何 一、單選題1(2022全國高考真題)已知正三棱臺(tái)的高為1,上、下底面邊長(zhǎng)分別為和,其頂點(diǎn)都在同一球面上,則該球的表面積為()ABCD【答案】A【解析】【分析】根據(jù)題意可求出正三棱臺(tái)上下底面所在圓面的半徑,再根據(jù)球心距,圓面半徑,以及球的半徑之間的關(guān)系,即可解出球的半徑,從而得出球的表面積【詳解】設(shè)正三棱臺(tái)上下底面所在圓面的半徑,所以,即,設(shè)球心到上下底面的距離分別為,球的半徑為,所以,故或,即或,解得符合題意,所以球的表面積為故選:A2(2022全國高考真題)南水北調(diào)工程緩解了北方一些地區(qū)水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔時(shí),相應(yīng)水面的面積為;水位為
2、海拔時(shí),相應(yīng)水面的面積為,將該水庫在這兩個(gè)水位間的形狀看作一個(gè)棱臺(tái),則該水庫水位從海拔上升到時(shí),增加的水量約為()()ABCD【答案】C【解析】【分析】根據(jù)題意只要求出棱臺(tái)的高,即可利用棱臺(tái)的體積公式求出【詳解】依題意可知棱臺(tái)的高為(m),所以增加的水量即為棱臺(tái)的體積棱臺(tái)上底面積,下底面積,故選:C3(2022全國高考真題)已知正四棱錐的側(cè)棱長(zhǎng)為l,其各頂點(diǎn)都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是()ABCD【答案】C【解析】【分析】設(shè)正四棱錐的高為,由球的截面性質(zhì)列方程求出正四棱錐的底面邊長(zhǎng)與高的關(guān)系,由此確定正四棱錐體積的取值范圍.【詳解】 球的體積為,所以球的半徑
3、,設(shè)正四棱錐的底面邊長(zhǎng)為,高為,則,,所以,所以正四棱錐的體積,所以,當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),正四棱錐的體積取最大值,最大值為,又時(shí),時(shí),,所以正四棱錐的體積的最小值為,所以該正四棱錐體積的取值范圍是.故選:C.4(2022全國高考真題(文)在正方體中,E,F(xiàn)分別為的中點(diǎn),則()A平面平面B平面平面C平面平面D平面平面【答案】A【解析】【分析】證明平面,即可判斷A;如圖,以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),分別求出平面,的法向量,根據(jù)法向量的位置關(guān)系,即可判斷BCD.【詳解】解:在正方體中,且平面,又平面,所以,因?yàn)榉謩e為的中點(diǎn),所以,所以,又,所以平面,又平面,所以平面平面,故A正確;如圖,以
4、點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),則,則,設(shè)平面的法向量為, 則有,可取,同理可得平面的法向量為,平面的法向量為,平面的法向量為,則,所以平面與平面不垂直,故B錯(cuò)誤;因?yàn)榕c不平行,所以平面與平面不平行,故C錯(cuò)誤;因?yàn)榕c不平行,所以平面與平面不平行,故D錯(cuò)誤,故選:A.5(2022全國高考真題(文)已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為()ABCD【答案】C【解析】【分析】先證明當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為,進(jìn)而得到四棱錐體積表達(dá)式,再利用均值定理去求四棱錐體積的最大值,從而得到當(dāng)該四棱
5、錐的體積最大時(shí)其高的值.【詳解】設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對(duì)角線夾角為,則(當(dāng)且僅當(dāng)四邊形ABCD為正方形時(shí)等號(hào)成立)即當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為又則當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,故選:C6(2022全國高考真題(理)甲、乙兩個(gè)圓錐的母線長(zhǎng)相等,側(cè)面展開圖的圓心角之和為,側(cè)面積分別為和,體積分別為和若,則()ABCD【答案】C【解析】【分析】設(shè)母線長(zhǎng)為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,根據(jù)圓錐的側(cè)面積公式可得,再結(jié)合圓心角之和可將分別用表示,再利用勾股定理分別求出兩圓錐的高,再根據(jù)圓錐的體積公式
6、即可得解.【詳解】解:設(shè)母線長(zhǎng)為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,則,所以,又,則,所以,所以甲圓錐的高,乙圓錐的高,所以.故選:C.7(2022全國高考真題(理)在長(zhǎng)方體中,已知與平面和平面所成的角均為,則()ABAB與平面所成的角為CD與平面所成的角為【答案】D【解析】【分析】根據(jù)線面角的定義以及長(zhǎng)方體的結(jié)構(gòu)特征即可求出【詳解】如圖所示:不妨設(shè),依題以及長(zhǎng)方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,解得對(duì)于A,A錯(cuò)誤;對(duì)于B,過作于,易知平面,所以與平面所成角為,因?yàn)椋?,B錯(cuò)誤;對(duì)于C,C錯(cuò)誤;對(duì)于D,與平面所成角為,而,所以D正確故選:D二、多選題8(2022
7、全國高考真題)如圖,四邊形為正方形,平面,記三棱錐,的體積分別為,則()ABCD【答案】CD【解析】【分析】直接由體積公式計(jì)算,連接交于點(diǎn),連接,由計(jì)算出,依次判斷選項(xiàng)即可.【詳解】設(shè),因?yàn)槠矫?,則,連接交于點(diǎn),連接,易得,又平面,平面,則,又,平面,則平面,又,過作于,易得四邊形為矩形,則,則,則,則,則,故A、B錯(cuò)誤;C、D正確.故選:CD.9(2022全國高考真題)已知正方體,則()A直線與所成的角為B直線與所成的角為C直線與平面所成的角為D直線與平面ABCD所成的角為【答案】ABD【解析】【分析】數(shù)形結(jié)合,依次對(duì)所給選項(xiàng)進(jìn)行判斷即可.【詳解】如圖,連接、,因?yàn)?,所以直線與所成的角即為直
8、線與所成的角,因?yàn)樗倪呅螢檎叫?,則,故直線與所成的角為,A正確;連接,因?yàn)槠矫妫矫?,則,因?yàn)?,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫?,平面,則,因?yàn)?,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.故選:ABD三、解答題10(2022全國高考真題)如圖,是三棱錐的高,E是的中點(diǎn)(1)證明:平面;(2)若,求二面角的正弦值【答案】(1)證明見解析(2)【解析】【分析】(1)連接并延長(zhǎng)交于點(diǎn),連接、,根據(jù)三角形全等得到,再根據(jù)直角三角形的性質(zhì)得到,即可得到為的中點(diǎn)從而得到,即可
9、得證;(2)過點(diǎn)作,如圖建立平面直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,再根據(jù)同角三角函數(shù)的基本關(guān)系計(jì)算可得;(1)證明:連接并延長(zhǎng)交于點(diǎn),連接、,因?yàn)槭侨忮F的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,所以所以,即,所以為的中點(diǎn),又為的中點(diǎn),所以,又平面,平面,所以平面(2)解:過點(diǎn)作,如圖建立平面直角坐標(biāo)系,因?yàn)?,所以,又,所以,則,所以,所以,所以,則,設(shè)平面的法向量為,則,令,則,所以;設(shè)平面的法向量為,則,令,則,所以;所以設(shè)二面角為,由圖可知二面角為鈍二面角,所以,所以故二面角的正弦值為;11(2022全國高考真題)如圖,直三棱柱的體積為4,的面積為(1)
10、求A到平面的距離;(2)設(shè)D為的中點(diǎn),平面平面,求二面角的正弦值【答案】(1)(2)【解析】【分析】(1)由等體積法運(yùn)算即可得解;(2)由面面垂直的性質(zhì)及判定可得平面,建立空間直角坐標(biāo)系,利用空間向量法即可得解.(1)在直三棱柱中,設(shè)點(diǎn)A到平面的距離為h,則,解得,所以點(diǎn)A到平面的距離為;(2)取的中點(diǎn)E,連接AE,如圖,因?yàn)?,所?又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,又平面且相交,所以平面,所以兩兩垂直,以B為原點(diǎn),建立空間直角坐標(biāo)系,如圖,由(1)得,所以,所以,則,所以的中點(diǎn),則,,設(shè)平面的一個(gè)法向量,則,可取,設(shè)平面的一個(gè)法向量,則,可取,則,
11、所以二面角的正弦值為.12(2022全國高考真題(文)如圖,四面體中,E為AC的中點(diǎn)(1)證明:平面平面ACD;(2)設(shè),點(diǎn)F在BD上,當(dāng)?shù)拿娣e最小時(shí),求三棱錐的體積【答案】(1)證明詳見解析(2)【解析】【分析】(1)通過證明平面來證得平面平面.(2)首先判斷出三角形的面積最小時(shí)點(diǎn)的位置,然后求得到平面的距離,從而求得三棱錐的體積.(1)由于,是的中點(diǎn),所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)依題意,三角形是等邊三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以當(dāng)最短時(shí),三
12、角形的面積最小值.過作,垂足為,在中,解得,所以,所以.過作,垂足為,則,所以平面,且,所以,所以.13(2022全國高考真題(理)如圖,四面體中,E為的中點(diǎn)(1)證明:平面平面;(2)設(shè),點(diǎn)F在上,當(dāng)?shù)拿娣e最小時(shí),求與平面所成的角的正弦值【答案】(1)證明過程見解析(2)與平面所成的角的正弦值為【解析】【分析】(1)根據(jù)已知關(guān)系證明,得到,結(jié)合等腰三角形三線合一得到垂直關(guān)系,結(jié)合面面垂直的判定定理即可證明;(2)根據(jù)勾股定理逆用得到,從而建立空間直角坐標(biāo)系,結(jié)合線面角的運(yùn)算法則進(jìn)行計(jì)算即可.(1)因?yàn)?,E為的中點(diǎn),所以;在和中,因?yàn)?,所以,所以,又因?yàn)镋為的中點(diǎn),所以;又因?yàn)槠矫妫云矫妫?/p>
13、因?yàn)槠矫?,所以平面平?(2)連接,由(1)知,平面,因?yàn)槠矫?,所以,所以,?dāng)時(shí),最小,即的面積最小.因?yàn)?,所以,又因?yàn)椋允堑冗吶切?,因?yàn)镋為的中點(diǎn),所以,因?yàn)椋?在中,所以.以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,所以,設(shè)平面的一個(gè)法向量為,則,取,則,又因?yàn)椋?,所以,設(shè)與平面所成的角的正弦值為,所以,所以與平面所成的角的正弦值為.14(2022全國高考真題(文)小明同學(xué)參加綜合實(shí)踐活動(dòng),設(shè)計(jì)了一個(gè)封閉的包裝盒,包裝盒如圖所示:底面是邊長(zhǎng)為8(單位:)的正方形,均為正三角形,且它們所在的平面都與平面垂直(1)證明:平面;(2)求該包裝盒的容積(不計(jì)包裝盒材料的厚度)【答案】(1)證明見解析;(2)【解析】【分析】(1)分別取的中點(diǎn),連接,由平面知識(shí)可知,依題從而可證平面,平面,根據(jù)線面垂直的性質(zhì)定理可知,即可知四邊形為平行四邊形,于是,最后根據(jù)線面平行的判定定理即可證出;(2)再分別取中點(diǎn),由(1)知,該幾何體的體積等于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度餐飲行業(yè)市場(chǎng)調(diào)研與分析服務(wù)合同范本2篇
- 二零二五年度網(wǎng)絡(luò)安全防護(hù)產(chǎn)品銷售合同6篇
- 二零二五年度車庫門智能鎖具更換與維修合同3篇
- 二零二五年度跨境電商平臺(tái)運(yùn)營代理服務(wù)合同范本2篇
- 二零二五年度城東小學(xué)幼兒園教室安全窗簾合同3篇
- 2025版施工隊(duì)中途退場(chǎng)原因及責(zé)任認(rèn)定合同3篇
- 二零二五年度酒店餐飲部菜品特色化經(jīng)營合同3篇
- 2025船買賣合同書
- 2025版旅游度假委托理財(cái)合同范本匯編3篇
- 二手貨車交易協(xié)議:2024年標(biāo)準(zhǔn)版
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專家共識(shí)(2024版)解讀
- 中藥飲片驗(yàn)收培訓(xùn)
- 手術(shù)室??谱o(hù)士工作總結(jié)匯報(bào)
- DB34T 1831-2013 油菜收獲與秸稈粉碎機(jī)械化聯(lián)合作業(yè)技術(shù)規(guī)范
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
- 創(chuàng)傷處理理論知識(shí)考核試題及答案
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》測(cè)試題+答案
- 殘疾軍人新退休政策
- 白酒代理合同范本
評(píng)論
0/150
提交評(píng)論