浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題含解析_第1頁
浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題含解析_第2頁
浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題含解析_第3頁
浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題含解析_第4頁
浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、PAGE 浙江省杭州之江高級中學(xué)2020-2021學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題(含解析)一、選擇題(共10小題,每小題4分,共40分).1若一個球的直徑為2,則此球的表面積為()A2B16C8D42“2x2+x0”是“x0”的()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件3兩圓x2+y26y0和x2+y28x+120的位置關(guān)系為()A相交B外切C內(nèi)切D相離4設(shè)A為圓x2+y22x0上的動點(diǎn),PA是圓的切線且|PA|1,則P點(diǎn)的軌跡方程是()A(x1)2+y24By22xC(x1)2+y22Dy22x5已知某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD6三條不重

2、合的直線a,b,c及三個不重合的平面,下列命題正確的是()A若a,a,則B若a,則aC若a,b,c,ca,cb,則D若a,c,c,c,則a7如圖,在正方體ABCDA1B1C1D1中,E為線段A1C1的中點(diǎn),則異面直線DE與B1C所成角的大小為()A15B30C45D608拋物線y22x上的點(diǎn)到直線距離的最小值是()A3BCD9已知橢圓的兩個焦點(diǎn)分別為F1,F(xiàn)2,若橢圓上存在點(diǎn)P使得F1PF2是鈍角,則橢圓離心率的取值范圍是()ABCD10如圖,在菱形ABCD中,BAD60,線段AD,BD,BC的中點(diǎn)分別為E,F(xiàn),K,連接EF,F(xiàn)K現(xiàn)將ABD繞對角線BD旋轉(zhuǎn),令二面角ABDC的平面角為,則在旋轉(zhuǎn)

3、過程中有()AEFKBEFKCEDKDEDK二、填空題:本大題共7小題,多空題每小題6分,單空題每小題6分,共36分.11已知雙曲線1,則該雙曲線的漸近線方程為 ,焦點(diǎn)坐標(biāo)為 12若直線m:2x4y30與n:3x+ay120平行,則a ,兩直線間的距離是 13圓x2+y2+4x2y+40上的點(diǎn)到直線yx1的最近距離為 ,最遠(yuǎn)距離為 14已知向量(2,1,3),(1,4,2),(7,5,),若,則 ,若,共面,則 15已知圓x2+y26x70與拋物線y22px(p0)的準(zhǔn)線相切,則p 16如圖,三棱錐SABC中,若AC2,SASBSCABBC4,E為棱SC的中點(diǎn),則直線AC與BE所成角的余弦值為

4、 17已知一個圓經(jīng)過直線l:2x+y+40與圓C:x2+y2+2x4y0的兩個交點(diǎn),并且有最小面積,則此圓的方程為 三、解答題:本大題共5小題,滿分74分,解答須寫出必要的文字說明、證明過程或演算步驟.18已知拋物線C:y22px(p0)的焦點(diǎn)為F,點(diǎn)P(1,2)在拋物線C上(1)求點(diǎn)F的坐標(biāo)和拋物線C的準(zhǔn)線方程;(2)過點(diǎn)F的直線l與拋物線C交于A,B兩個不同點(diǎn),若AB的中點(diǎn)為M(3,2),求OAB的面積19如圖,ABCD是正方形,直線PD底面ABCD,PDDC,E是PC的中點(diǎn)(1)證明:直線PA平面EDB;(2)求直線PB與平面ABCD所成角的正切值20如圖,在直三棱柱ABCA1B1C1中

5、,已知AA1BCAB2,ABBC(1)求四棱錐A1BCC1B1的體積;(2)求二面角B1A1CC1的大小21設(shè)橢圓C:1(ab0),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),B為短軸的一個端點(diǎn),且S,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最小值為1,O為坐標(biāo)原點(diǎn)(1)求橢圓C的方程;(2)若點(diǎn)P是橢圓上一點(diǎn),1,求點(diǎn)P的坐標(biāo)22已知兩定點(diǎn),點(diǎn)P是曲線E上任意一點(diǎn),且滿足條件求曲線E的軌跡方程;若直線ykx1與曲線E交于不同兩點(diǎn)A,B兩點(diǎn),求k的范圍參考答案一、選擇題(共10小題,每小題4分,共40分).1若一個球的直徑為2,則此球的表面積為()A2B16C8D4解:球的直徑為2,該球的半徑為1,可得該球的表面積為S4R

6、24124故選:D2“2x2+x0”是“x0”的()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件解:由2x2+x0,解得:x0或x2,故“x0或x2“是“x0”的必要不充分條件,故“2x2+x0”是“x0”的必要不充分條件,故選:B3兩圓x2+y26y0和x2+y28x+120的位置關(guān)系為()A相交B外切C內(nèi)切D相離解:圓x2+y26y0的圓心(0,3)半徑為3;x2+y28x+120圓心(4,0)半徑為2,圓心距為5,半徑和為3+25,兩個圓的位置關(guān)系是外切故選:B4設(shè)A為圓x2+y22x0上的動點(diǎn),PA是圓的切線且|PA|1,則P點(diǎn)的軌跡方程是()A(x1)2+y24B

7、y22xC(x1)2+y22Dy22x解:圓x2+y22x0可化為(x1)2+y21,由題意可得圓心C(1,0)到P點(diǎn)的距離為,所以點(diǎn)P在以(1,0)為圓心, 為半徑的圓上,所以點(diǎn)P的軌跡方程是(x1)2+y22故選:C5已知某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為底面半徑為,高為2的圓柱的,挖去一個半徑為的半球;故:V故選:A6三條不重合的直線a,b,c及三個不重合的平面,下列命題正確的是()A若a,a,則B若a,則aC若a,b,c,ca,cb,則D若a,c,c,c,則a解:在正方體中可以判斷,A命題不正確;設(shè)作a,a是過a直線

8、上一點(diǎn)O的直線,a,a,a,a,a,而2個平面的交線只有一條,a與a重合,故a,故答案B是 正確的命題當(dāng)ab時,C命題不正確;當(dāng),兩兩相交于同一條直線a時,也存在a,c,c,c,這種情況,故D命題不正確,故選:B7如圖,在正方體ABCDA1B1C1D1中,E為線段A1C1的中點(diǎn),則異面直線DE與B1C所成角的大小為()A15B30C45D60解:分別以DA、DC、DD1所在直線為x、y、z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,可得D(0,0,0),E(1,1,2),B1(2,2,2),C(0,2,0),(1,1,2),(2,0,2),cos,異面直線DE與B1C所成角的余弦值為異面直線DE與

9、B1C所成角的大小為:30故選:B8拋物線y22x上的點(diǎn)到直線距離的最小值是()A3BCD解:因?yàn)辄c(diǎn)P在拋物線y22x上,設(shè),則點(diǎn)P到直線的距離y0R,當(dāng)時,故選:C9已知橢圓的兩個焦點(diǎn)分別為F1,F(xiàn)2,若橢圓上存在點(diǎn)P使得F1PF2是鈍角,則橢圓離心率的取值范圍是()ABCD解:如圖,當(dāng)動點(diǎn)P在橢圓長軸端點(diǎn)處沿橢圓弧向短軸端點(diǎn)運(yùn)動時,P對兩個焦點(diǎn)的張角F1PF2漸漸增大,當(dāng)且僅當(dāng)P點(diǎn)位于短軸端點(diǎn)P0處時,張角F1PF2達(dá)到最大值由此可得:橢圓上存在點(diǎn)P使得F1PF2是鈍角,P0F1F2中,F(xiàn)1P0F290,RtP0OF2中,OP0F245,所以P0OOF2,即bc,a2c2c2,可得a22c

10、2,e,0e1,e1故選:B10如圖,在菱形ABCD中,BAD60,線段AD,BD,BC的中點(diǎn)分別為E,F(xiàn),K,連接EF,F(xiàn)K現(xiàn)將ABD繞對角線BD旋轉(zhuǎn),令二面角ABDC的平面角為,則在旋轉(zhuǎn)過程中有()AEFKBEFKCEDKDEDK解:法一(考慮特殊位置)考慮初始位置,180,排除D;考慮重疊位置,0,排除AC,故選:B法二(二面角最大原理)如圖,EFKEFE,EHMEHE,在二面角ABDA中,根據(jù)二面角最大角原理得,EHEEFE,故故選:B二、填空題:本大題共7小題,多空題每小題6分,單空題每小題6分,共36分.11已知雙曲線1,則該雙曲線的漸近線方程為yx,焦點(diǎn)坐標(biāo)為(,0)解:雙曲線1

11、,可得a2,b,c,則該雙曲線的漸近線方程為:yx焦點(diǎn)坐標(biāo)為:(,0)故答案為:yx;(,0)12若直線m:2x4y30與n:3x+ay120平行,則a6,兩直線間的距離是 解:因?yàn)橹本€m:2x4y30與n:3x+ay120平行,所以,解得a6,所以直線m:2x4y30,直線n:3x6y120,取直線n上一點(diǎn)P(4,0),則點(diǎn)P到直線m的距離為,所以兩直線間的距離是故答案為:6;13圓x2+y2+4x2y+40上的點(diǎn)到直線yx1的最近距離為 ,最遠(yuǎn)距離為 解:由題意可知,圓的方程為x2+y2+4x2y+40,即(x+2)2+(y1)21,圓心(2,1)到直線yx1的距離 d,圓的點(diǎn)到直線的最近

12、距離為dr,最遠(yuǎn)的距離為故答案為:,14已知向量(2,1,3),(1,4,2),(7,5,),若,則3,若,共面,則解:由題意,可知:27+(1)5+30,解得3,共面存在兩個實(shí)數(shù)m、n,使得m+n,即,根據(jù)上面兩個式子,可得32故答案為:3,15已知圓x2+y26x70與拋物線y22px(p0)的準(zhǔn)線相切,則p2解:拋物線y22px (p0)的準(zhǔn)線為 x,圓x2+y26x70,即(x3)2+y216,表示以(3,0)為圓心,半徑等于4的圓由題意得 3+4,p2,故答案為216如圖,三棱錐SABC中,若AC2,SASBSCABBC4,E為棱SC的中點(diǎn),則直線AC與BE所成角的余弦值為解:取SA

13、的中點(diǎn)F,連接EF,BF,E為棱SC的中點(diǎn),EFAC,BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,AC2,SASBABBCSC4,BEBF2,EF,在等腰BEF中,cosBEF故答案為:17已知一個圓經(jīng)過直線l:2x+y+40與圓C:x2+y2+2x4y0的兩個交點(diǎn),并且有最小面積,則此圓的方程為x2+y2+xy+0解:可設(shè)圓的方程為x2+y2+2x4y+(2x+y+4)0,即x2+y2+2(1+)x+(4)y+40,此時圓心坐標(biāo)為(1,),顯然當(dāng)圓心在直線2x+y+40上時,圓的半徑最小,從而面積最小,2(1)+40,解得:,則所求圓的方程為:x2+y2+xy+0故答案為:x2+y2+x

14、y+0三、解答題:本大題共5小題,滿分74分,解答須寫出必要的文字說明、證明過程或演算步驟.18已知拋物線C:y22px(p0)的焦點(diǎn)為F,點(diǎn)P(1,2)在拋物線C上(1)求點(diǎn)F的坐標(biāo)和拋物線C的準(zhǔn)線方程;(2)過點(diǎn)F的直線l與拋物線C交于A,B兩個不同點(diǎn),若AB的中點(diǎn)為M(3,2),求OAB的面積解:(1)將點(diǎn)代入拋物線得p2,則拋物線的方程為:y24x,焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程為x1(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),所以直線l的斜率為1,直線l的方程為yx+1,|AB|x1+x2+p6+28,點(diǎn)O到直線l的距離,所以19如圖,ABCD是正方形,直線PD底面ABCD,PDD

15、C,E是PC的中點(diǎn)(1)證明:直線PA平面EDB;(2)求直線PB與平面ABCD所成角的正切值【解答】證明:(1)連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OE,ABCD是正方形,O是AC中點(diǎn),E是PC的中點(diǎn),OEPA,PA平面BDE,OE平面BDE,直線PA平面EDB解:(2)直線PD底面ABCD,ABCD是正方形,PDDC,PBD是直線PB與平面ABCD所成角,設(shè)PDDCa,則BD,tanPBD直線PB與平面ABCD所成角的正切值為20如圖,在直三棱柱ABCA1B1C1中,已知AA1BCAB2,ABBC(1)求四棱錐A1BCC1B1的體積;(2)求二面角B1A1CC1的大小【解答】(本題滿分12分)本

16、題共2小題,第(1)小題,第(2)小題解:(1)因?yàn)锳BBC,三棱柱ABCA1B1C1是直三棱柱,所以ABBCC1B1,從而A1B1是四棱錐A1BCC1B1的高四棱錐A1BCC1B1的體積為V222(2)如圖(圖略),建立空間直角坐標(biāo)系則A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),設(shè)AC的中點(diǎn)為M,BMAC,NMCC1,BM平面A1C1C,即(1,1,0)是平面A1C1C的一個法向量設(shè)平面A1B1C的一個法向量是(x,y,z),(2,2,2),(2,0,0)2x0,令z1,解得x0,y1.(0,1,1),設(shè)法向量與的夾角為,二面角B1A1CC1的大小為,顯然為銳角cos|cos|,二面角B1A1CC1的大小為21設(shè)橢圓C:1(ab0),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),B為短軸的一個端點(diǎn),且S,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最小值為1,O為坐標(biāo)原點(diǎn)(1)求橢圓C的方程;(2)若點(diǎn)P是橢圓上一點(diǎn),1,求點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論