中考數(shù)學知識點總結(jié)_第1頁
中考數(shù)學知識點總結(jié)_第2頁
中考數(shù)學知識點總結(jié)_第3頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、 中考數(shù)學知識點總結(jié)(完整版)中考數(shù)學學問點總結(jié)(完整版)1 不等式與不等式組 1.定義: 用符號,=,號連接的式子叫不等式。 2.性質(zhì): 不等式的兩邊都加上或減去同一個整式,不等號方向不變。 不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。 不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。 3.分類: 一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。 一元一次不等式組: a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。 b.一元一次不等式組中各個不等式的解集的公共局部,叫做這個一元一次不等式組的解集。 4

2、.考點: 解一元一次不等式(組) 依據(jù)詳細問題中的數(shù)量關(guān)系列不等式(組)并解決簡潔實際問題 用數(shù)軸表示一元一次不等式(組)的解集 中考數(shù)學學問點總結(jié)(完整版)2 中位線概念 (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。 (2)梯形中位線定義:連接梯形兩腰中點的線段叫做梯形的中位線。 留意(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連接一頂點和它的對邊中點的線段,而三角形中位線是連接三角形兩邊中點的線段。 (2)梯形的中位線是連接兩腰中點的線段而不是連結(jié)兩底中點的線段。 (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時三角形的中位線就變

3、成梯形的中位線。 中位線定理 (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半. (2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半. 中位線定理推廣 三角形有三條中位線,首尾相接時,每個小三角形面積都等于原三角形的四分之一,這四個三角形都相互全等。 中考數(shù)學學問點總結(jié)(完整版)3 函數(shù) 位置確實定與平面直角坐標系 位置確實定 坐標變換 平面直角坐標系內(nèi)點的特征 平面直角坐標系內(nèi)點坐標的符號與點的象限位置 對稱問題:P(x,y)Q(x,- y)關(guān)于x軸對稱P(x,y)Q(- x,y)關(guān)于y軸對稱P(x,y)Q(- x,-y)關(guān)于原點對稱 變量、自變量、因變量、

4、函數(shù)的定義 函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢描述 一次函數(shù)與正比例函數(shù) 一次函數(shù)的定義與正比例函數(shù)的定義 一次函數(shù)的圖象:直線,畫法 一次函數(shù)的性質(zhì)(增減性) 一次函數(shù)y=kx+b(k0)中k、b符號與圖象位置 待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回) 一次函數(shù)的平移問題 一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法) 一次函數(shù)的實際應用 一次函數(shù)的綜合應用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合 中考數(shù)學學問點總結(jié)(完整版)4 一、代數(shù)式

5、1. 概念:用根本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。 2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,根據(jù)代數(shù)式的運算關(guān)系,計算得出的結(jié)果。 二、整式 單項式和多項式統(tǒng)稱為整式。 1. 單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。 2) 單項式的系數(shù):單項式中的 數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。 3) 單項式的次數(shù):一個單項式中,全部字母的指數(shù)的和叫做這個單項式的次數(shù)。 2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字

6、母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。 2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。 3. 多項式的排列: 1).把一個多項式按某一個字母的指數(shù)從大到小的挨次排列起來,叫做把多項式按這個字母降冪排列。 2).把一個多項式按某一個字母的指數(shù)從小到大的挨次排列起來,叫做把多項式按這個字母升冪排列。 由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一局部,一起移動。 三、整式的運算 1. 同類項所含字母一樣,并且一樣字母的次數(shù)也一樣的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的挨次也無關(guān)。 2. 合并同

7、類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。 3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。 4. 冪的運算: 5. 整式的乘法: 1) 單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。 2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。 3) 多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。 6. 整式的除法 1) 單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式

8、里含有的字母,則連同它的指數(shù)作為商的一個因式。 2) 多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。 四、因式分解把一個多項式化成幾個整式的積的形式 1) 提公因式法:(公因式多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。 取各項系數(shù)的最大公約數(shù)作為因式的系數(shù),取一樣字母最低次冪的積。公因式可以是單項式,也可以是多項式。 2) 公式法:A.平方差公式; B.完全平方公式 中考數(shù)學學問點總結(jié)(完整版)5 一、三角形的有關(guān)概念 1.三角形:由不在同始終線上的三條線段首尾順次相接組成的圖形叫三角形。 三角形的特征:不在同始終線上;三條線段;首尾順

9、次相接;三角形具有穩(wěn)定性。 2.三角形中的三條重要線段:角平分線、中線、高 (1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。 (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。 (3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。 說明:三角形的角平分線、中線、高都是線段;三角形的角平分線、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。 二、等腰三角形的性質(zhì)和判定 (1

10、)性質(zhì) 1.等腰三角形的兩個底角相等(簡寫成“等邊對等角“)。 2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成“等腰三角形的三線合一“)。 3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。 4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。 5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。 6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。 7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。 (2)判定 在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)

11、。 在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。 三、直角三角形和勾股定理 有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。 勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。 勾股數(shù)肯定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。 方法總結(jié): 當不明確直角三角形的斜邊長,應把已知最長邊分為直角邊和斜邊兩種狀況爭論。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常

12、用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量) 假如三角形的三邊長a,b,c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于推斷三角形的外形,先確定最大邊(可以設(shè)為c)。 四、初中三角形中線定理 中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關(guān)系。 定理內(nèi)容:三角形一條中線兩側(cè)所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。 中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點。 由定義可知,三角形的中線是一條線段。 由于三角形有三條邊,所以一個三角形有三條中線。 且三條中線交于一點。這點稱為三角形的重

13、心。 每條三角形中線分得的兩個三角形面積相等。 五、直角三角形的判定 判定1:有一個角為90的三角形是直角三角形。 判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。 判定3:若一個三角形30內(nèi)角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。 判定4:兩個銳角互余的三角形是直角三角形。 判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應相等,以及一個直角邊對應相等,則兩直角三角形全等。定理:斜邊和一條直角對應相等的兩個直角三角形全等。簡稱為HL 判定6:若兩直線相交且它們的斜率之積互為負倒數(shù),則

14、這兩直線垂直。 判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。 六、勾股定理的逆定理 假如三角形三邊長a,b,c滿意,那么這個三角形是直角三角形,其中c為斜邊。 勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能外形,在運用這肯定理時,可用兩小邊的平方和與較長邊的平方作比擬,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形; 定理中a,b,c及只是一種表現(xiàn)形式,不行認為是唯一的,如若三角形三邊長a,b,

15、c滿意,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊. 勾股定理的逆定理在用問題描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。 七、三角形定理公式 三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。 三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度。 三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。 三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。 三角形的三條角平分線交于一點(內(nèi)心)。 三角形的三邊的垂直平分線交于一點(外心)。 三角形中位線定理:三角形兩邊中點的連線平行于第三邊,

16、并且等于第三邊的一半。 中考數(shù)學學問點總結(jié)(完整版)6 1、變量與常量 在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。 一般地,在某一變化過程中有兩個變量x與y,假如對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。 2、函數(shù)解析式 用來表示函數(shù)關(guān)系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。 使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。 3、函數(shù)的三種表示法及其優(yōu)缺點 (1)解析法 兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。 (2)列表法 把自變量x的一系列值和函數(shù)y的對應值

17、列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。 (3)圖像法 用圖像表示函數(shù)關(guān)系的方法叫做圖像法。 4、由函數(shù)解析式畫其圖像的一般步驟 (1)列表:列表給出自變量與函數(shù)的一些對應值。 (2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點。 (3)連線:根據(jù)自變量由小到大的挨次,把所描各點用平滑的曲線連接起來。 中考數(shù)學學問點總結(jié)(完整版)7 考點1:確定大事和隨機大事 考核要求: 1理解必定大事、不行能大事、隨機大事的概念,知道確定大事與必定大事、不行能大事的關(guān)系; 2能區(qū)分簡潔生活大事中的必定大事、不行能大事、隨機大事。 考點2:大事發(fā)生的可能性大小,大事的概率 考核要求: 1知道

18、各種大事發(fā)生的可能性大小不同,能推斷一些隨機大事發(fā)生的可能大事的大小并排出大小挨次; 2知道概率的含義和表示符號,了解必定大事、不行能大事的概率和隨機大事概率的取值范圍; 3理解隨機大事發(fā)生的頻率之間的區(qū)分和聯(lián)系,會依據(jù)大數(shù)次試驗所得頻率估量大事的概率。 1在給可能性的大小排序前可先用肯定發(fā)生、很有可能發(fā)生、 可能發(fā)生、不太可能發(fā)生、肯定不會發(fā)生等詞語來表述大事發(fā)生的可能性的大??; 2大事的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關(guān),只有當試驗次數(shù)足夠大時才能更準確。 考點3:等可能試驗中大事的概率問題及概率計算 考核要求 1理解等可能試驗的概念,會用等可能試驗中大

19、事概率計算公式來計算簡潔大事的概率; 2會用枚舉法或畫樹形圖方法求等可能大事的概率,會用區(qū)域面積之比解決簡潔的概率問題; 3形成對概率的.初步熟悉,了解時機與風險、規(guī)那么公正性與決策合理性等簡潔概率問題。 1計算前要先確定是否為可能大事; 2用枚舉法或畫樹形圖方法求等可能大事的概率過程中要將全部等可能狀況考慮完整。 考點4:數(shù)據(jù)整理與統(tǒng)計圖表 考核要求: 1知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)分; 2結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,把握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獵取有關(guān)信息。 考點5:統(tǒng)計的含義 考核要求: 1知道統(tǒng)計的意義和一般討論過程;

20、 2熟悉個體、總體和樣本的區(qū)分,了解樣本估量總體的思想方法。 考點6:平均數(shù)、加權(quán)平均數(shù)的概念和計算 考核要求: 1理解平均數(shù)、加權(quán)平均數(shù)的概念; 2把握平均數(shù)、加權(quán)平均數(shù)的計算公式。留意:在計算平均數(shù)、加權(quán)平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算精確率。 考點7:中位數(shù)、眾數(shù)、方差、標準差的概念和計算 考核要求: 1知道中位數(shù)、眾數(shù)、方差、標準差的概念; 2會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡潔的統(tǒng)計問題。 1當一組數(shù)據(jù)中消失極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平; 2求中位數(shù)之前必需先將數(shù)據(jù)排序。 考點8:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率

21、分布直方圖考核要求: 1理解頻數(shù)、頻率的概念,把握頻數(shù)、頻率和總量三者之間的關(guān)系式; 2會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實際問題。解題時要留意:頻數(shù)、頻率能反映每個對象消失的頻繁程度,但也存在差異:在同一個問題中,頻數(shù)反映的是對象消失頻繁程度的肯定數(shù)據(jù),全部頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁消失的相對數(shù)據(jù),全部的頻率之和是1。 考點9:中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應用考核要求: 1了解根本統(tǒng)計量平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率的意計算及其應用,并把握其概念和計算方法; 2正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能依據(jù)計算結(jié)果作出推斷和猜測;

22、 3能將多個圖表結(jié)合起來,綜合處理圖表供應的數(shù)據(jù),會利用各種統(tǒng)計量來進展推理和分析, 要練說,得練看??磁c說是統(tǒng)一的,看不準就難以說得好。練看,就是訓練幼兒的觀看力量,擴大幼兒的認知范圍,讓幼兒在觀看事物、觀看生活、觀看自然的活動中,積存詞匯、理解詞義、進展語言。在運用觀看法組織活動時,我著眼觀看于觀看對象的選擇,著力于觀看過程的指導,著重于幼兒觀看力量和語言表達力量的提高。 單靠死記還不行,還得活用,姑且稱之為先死后活吧。讓學生把一周看到或聽到的新奇事登記來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積存的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。

23、這樣,即穩(wěn)固了所學的材料,又熬煉了學生的寫作力量,同時還培育了學生的觀看力量、思維力量等等,到達一石多鳥的效果。討論解決有關(guān)的實際生活中問題,然后作出合理的解決。 一般說來,教師概念之形成經(jīng)受了非常漫長的歷史。楊士勛唐初學者,四門博士 ?春秋谷梁傳疏?曰:師者教人以不及,故謂師為師資也。 這兒的師資,其實就是先秦而后歷代對教師的別稱之一。 韓非子也有云:“今有不才之子?師長教之弗為變其“師長固然也指教師。這兒的師資和師長可稱為教師概念的雛形,但仍說不上是名副其實的教師,由于教師必需要有明確的傳授學問的對象和本身明確的職責。 中考數(shù)學學問點總結(jié)(完整版)8 1.單項式:在代數(shù)式中,若只含有乘法(

24、包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。 2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。全部字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1. 3.多項式:幾個單項式的和叫多項式。 4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。 5.常數(shù)項:不含字母的項叫做常數(shù)項。 6.多項式的排列 (1)把一個多項式按某一個字母的指數(shù)從大到小的挨次排列起來,叫做把多項式按這個字母降冪排列。 (2)把一個多項式按某

25、一個字母的指數(shù)從小到大的挨次排列起來,叫做把多項式按這個字母升冪排列。 7.多項式的排列時留意: (1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一局部,一起移動。 (2)有兩個或兩個以上字母的多項式,排列時,要留意: a.先確認根據(jù)哪個字母的指數(shù)來排列。 b.確定按這個字母向里排列,還是向外排列。 (3)整式: 單項式和多項式統(tǒng)稱為整式。 8.多項式的加法: 多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。 9.同類項:所含字母一樣,并且一樣字母的次數(shù)也分別一樣的項叫做同類項。 10.合并同類項:多項式中的同類項可以合并,叫做合并同類

26、項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。 11.把握同類項的概念時留意: (1)推斷幾個單項式或項,是否是同類項,就要把握兩個條件: 所含字母一樣。 一樣字母的次數(shù)也一樣。 (2)同類項與系數(shù)無關(guān),與字母排列的挨次也無關(guān)。 (3)全部常數(shù)項都是同類項。 12.合并同類項步驟: (1)精確的找出同類項; (2)逆用安排律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變; (3)寫出合并后的結(jié)果。 13.在把握合并同類項時留意: (1)假如兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0; (2)不要漏掉不能合并的項; (3)只要不再有同類項

27、,就是結(jié)果(可能是單項式,也可能是多項式)。 14.整式的拓展 整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的構(gòu)造特征以及公式中的字母的廣泛含義,學生不易把握.因此,乘法公式的敏捷運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要依據(jù)添括號(或去括號)的法則進展。在整式的乘除中,單項式的乘除是關(guān)鍵,這是由于,一般多項式的乘除都要“轉(zhuǎn)化”為單項式的乘除。 整式四則運算的主要題型有: (1)單項式的四則運算 此類題目多以選擇題和應用題的形式消失,其特點是考察單項式的四則運算。 (2)單項式與多項式的運算 中考數(shù)學學問點總結(jié)(完整版

28、)9 一、初中數(shù)學根本學問 、數(shù)與代數(shù) A、數(shù)與式: 1、有理數(shù) 有理數(shù):整數(shù)正整數(shù)/0/負整數(shù) 分數(shù)正分數(shù)/負分數(shù) 數(shù)軸:畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。假如兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 肯定值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的肯定值。正數(shù)的肯定值

29、是他的本身、負數(shù)的肯定值是他的相反數(shù)、0的肯定值是0。兩個負數(shù)比擬大小,肯定值大的反而小。 有理數(shù)的運算: 加法:同號相加,取一樣的符號,把肯定值相加。異號相加,肯定值相等時和為0;肯定值不等時,取肯定值較大的數(shù)的符號,并用較大的肯定值減去較小的肯定值。一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 乘法:兩數(shù)相乘,同號得正,異號得負,肯定值相乘。任何數(shù)與0相乘得0。乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。0不能作除數(shù)。 乘方:求N個一樣因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。 混合挨次:先算乘法,再算乘除,最終算加減,有括

30、號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:假如一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。假如一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:假如一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。 實數(shù):實數(shù)分有理數(shù)和無理數(shù)。在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),肯定值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),肯定值的意義完全一樣。每

31、一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。 合并同類項:所含字母一樣,并且一樣字母的指數(shù)也一樣的項,叫做同類項。把同類項合并成一項就叫做合并同類項。在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式:數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。一個單項式中,全部字母的指數(shù)和叫做這個單項式的次數(shù)。一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。 整式運算:加減運算時,假如遇到括號先去括號,再合并同類項。 冪的運算:AMAN=A(MN) (AM)N=AMN (A/B)N=

32、AN/BN除法一樣。 整式的乘法:單項式與單項式相乘,把他們的系數(shù),一樣字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。單項式與多項式相乘,就是依據(jù)安排律用單項式去乘多項式的每一項,再把所得的積相加。多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法: 單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。 多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫

33、做把這個多項式分解因式。 方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式: 整式A除以整式B,假如除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。 分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。 除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法: 同分母的分式相加減,分母不變,把分子相加減。 異分母的分式先通分,化為同分母的分式,再加減。 分式方程: 分母中含有未知數(shù)的方程叫分式方程。 使方程的分母為0的解稱為原方程的增根。 20 xx年中考數(shù)學根底學問總結(jié)20 x

34、x年中考數(shù)學根底學問總結(jié) B、方程與不等式 1、方程與方程組 一元一次方程: 在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。 等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。 二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的

35、方法:代入消元法/加減消元法。 一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,似乎解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特別狀況,就是當?shù)?的時候就構(gòu)成了一元二次方程了。那假如在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了 2)一元二次方程的解法 大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,由于在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一局

36、部,所以他也有自己的一個解法,利用他可以求出全部的一元一次方程的解 (1)配方法 利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解 (3)公式法 這方法也可以是在解一元二次方程的萬能方法了,方程的根X1=-bb2-4ac)/2a,X2=-b-b2-4ac)/2a 3)解一元二次方程的步驟: (1)配方法的步驟: 先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最終配成完全平方公式 (2)分解因式法的步驟: 把方程右邊化為0

37、,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,假如可以,就可以化為乘積的形式 (3)公式法 就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c 4)韋達定理 利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a 也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用 5)一元一次方程根的狀況 利用根的判別式去了解,根的判別式可在書面上可以寫為“”,讀作“diata”,而=b2-4ac,這里可以分為3種狀況: I當0時,一元二次方程有

38、2個不相等的實數(shù)根; II當=0時,一元二次方程有2個一樣的實數(shù)根; III當B,ACBC 在不等式中,假如減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:AB,A-CB-C 在不等式中,假如乘以同一個正數(shù),不等號不改向;例如:AB,A*CB*C(C0) 在不等式中,假如乘以同一個負數(shù),不等號改向;例如:AB,A*C 假如不等式乘以0,那么不等號改為等號 所以在題目中,要求出乘以的數(shù),那么就要看看題中是否消失一元一次不等式,假如消失了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立; 二、函數(shù) 變量:因變量,自變量。 在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎

39、直方向的數(shù)軸上的點表示因變量。 一次函數(shù):若兩個變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱是X的一次函數(shù)。當B=0時,稱是X的正比例函數(shù)。 一次函數(shù)的圖象:把一個函數(shù)的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,全部這些點組成的圖形叫做該函數(shù)的圖象。正比例函數(shù)=X的圖象是經(jīng)過原點的一條直線。在一次函數(shù)中,當0,BO,則經(jīng)234象限;當0,B0時,則經(jīng)124象限;當0,B0時,則經(jīng)134象限;當0,B0時,則經(jīng)123象限。當0時,的值隨X值的增大而增大,當X0時,的值隨X值的增大而削減。 三、空間與圖形 A、圖形的熟悉 1、點,線

40、,面 點,線,面:圖形是由點,線,面構(gòu)成的。面與面相交得線,線與線相交得點。點動成線,線動成面,面動成體。 綻開與折疊:在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的全部側(cè)棱長相等,棱柱的上下底面的外形一樣,側(cè)面的外形都是長方體。N棱柱就是底面圖形有N條邊的棱柱。 截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。 視圖:主視圖,左視圖,俯視圖。 多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。 20 xx年中考數(shù)學根底學問總結(jié)建筑師考試_建筑工程類工程師考試網(wǎng) 弧、扇形:由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。圓可以分割成

41、若干個扇形。 2、角 線:線段有兩個端點。將線段向一個方向無限延長就形成了射線。射線只有一個端點。將線段的兩端無限延長就形成了直線。直線沒有端點。經(jīng)過兩點有且只有一條直線。 比擬長短:兩點之間的全部連線中,線段最短。兩點之間線段的長度,叫做這兩點之間的距離。 角的度量與表示:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。一度的1/60是一分,一分的1/60是一秒。 角的比擬:角也可以看成是由一條射線圍著他的端點旋轉(zhuǎn)而成的。一條射線圍著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊連續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。從一個角的頂點引出的一條射線,把

42、這個角分成兩個相等的角,這條射線叫做這個角的平分線。 平行:同一平面內(nèi),不相交的兩條直線叫做平行線。經(jīng)過直線外一點,有且只有一條直線與這條直線平行。假如兩條直線都與第3條直線平行,那么這兩條直線相互平行。 垂直:假如兩條直線相交成直角,那么這兩條直線相互垂直。相互垂直的兩條直線的交點叫做垂足。平面內(nèi),過一點有且只有一條直線與已知直線垂直。 垂直平分線:垂直和平分一條線段的直線叫垂直平分線。 垂直平分線垂直平分的肯定是線段,不能是射線或直線,這依據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)肯定要把線段穿出2點。 垂直

43、平分線定理: 性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等; 判定定理:到線段2端點距離相等的點在這線段的垂直平分線上 角平分線:把一個角平分的射線叫該角的角平分線。 定義中有幾個要點要留意一下的,就是角的角平分線是一條射線,不是線段也不是直線,許多時,在題目中會消失直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點 性質(zhì)定理:角平分線上的點到該角兩邊的距離相等 判定定理:到角的兩邊距離相等的點在該角的角平分線上 正方形:一組鄰邊相等的矩形是正方形 性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 中考數(shù)學學問點總結(jié)(完整版)10 圓

44、的定理: 1不在同始終線上的三點確定一個圓。 2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 推論1平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 推論2圓的兩條平行弦所夾的弧相等 3圓是以圓心為對稱中心的中心對稱圖形 4圓是定點的距離等于定長的點的集合 5圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 6圓的外部可以看作是圓心的距離大于半徑的點的集合 7同圓或等圓的半徑相等 8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 9定理在同圓或等圓中,

45、相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 10推論在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 中考數(shù)學學問點復習口訣 有理數(shù)的加法運算 同號相加一邊倒;異號相加“大”減“小”, 符號跟著大的跑;肯定值相等“零”正好。 合并同類項 合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。 去、添括號法則 去括號、添括號,關(guān)鍵看符號, 括號前面是正號,去、添括號不變號, 括號前面是負號,去、添括號都變號。 一元一次方程 已知未知要分別,分別方法就是移,加減移項要變號,乘除移了要顛倒。 平方差公式 平方差公式有兩項,符

46、號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。 完全平方公式 完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中心; 首尾括號帶平方,尾項符號隨中心。 因式分解 一提(公因式)二套(公式)三分組,細看幾項不離譜, 兩項只用平方差,三項十字相乘法,陣法嫻熟不馬虎, 四項認真看清晰,若有三個平方數(shù)(項), 就用一三來分組,否則二二去分組, 五項、六項更多項,二三、三三試分組, 以上若都行不通,拆項、添項看清晰。 單項式運算 加、減、乘、除、乘(開)方,三級運算分得清, 系數(shù)進展同級(運)算,指數(shù)運算降級(進)行。 一元一次不等式解題步驟 去分母、去括號,移項時候要變號,同類項合并好,

47、再把系數(shù)來除掉, 兩邊除(以)負數(shù)時,不等號改向別忘了。 一元一次不等式組的解集 大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。 一元二次不等式、一元一次肯定值不等式的解集 大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。 分式混合運算法則 分式四則運算,挨次乘除加減,乘除同級運算,除法符號須變(乘); 乘法進展化簡,因式分解在先,分子分母相約,然后再行運算; 加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難; 變號必需兩處,結(jié)果要求最簡。 中考數(shù)學學問點歸納:平面直角坐標系 平面直角坐標系 1、平面直角坐標系 在平面內(nèi)畫兩條相互垂直且有公共原點的數(shù)軸,就組成了平面直角坐

48、標系。 其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。 為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個局部,分別叫做第一象限、其次象限、第三象限、第四象限。 留意:x軸和y軸上的點,不屬于任何象限。 2、點的坐標的概念 點的坐標用(a,b)表示,其挨次是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,當時,(a,b)和(b,a)是兩個不同點的坐標。 中考數(shù)學學問點總結(jié)(完整版)11 有理數(shù): (

49、1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù). 留意:0即不是正數(shù),也不是負數(shù);-a不肯定是負數(shù),+a也不肯定是正數(shù);不是有理數(shù); (2)有理數(shù)的分類: (3)留意:有理數(shù)中,1、0、-1是三個特別的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; (4)自然數(shù)0和正整數(shù);a0a是正數(shù);a0k0時,函數(shù)圖像的兩個分支分別 在第一、三象限。在每個象限內(nèi),y 隨x 的增大而減小。 x的取值范圍是x0, y的取值范圍是y0; 當k0時,函數(shù)圖像的兩個分支分別 在第二、四象限。在每個象限內(nèi),y 隨x 的增大而增大。 4、反比例函數(shù)解析式的確定 確定及誒是

50、的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。 5、反比例函數(shù)的幾何意義 設(shè)是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則 (1)OPA的面積. (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,OPA的面積和矩形OAPB的面積都保持不變。 矩形PCEF面積=,平行四邊形PDEA面積= 中考數(shù)學知識點總結(jié)(完整版)14 一、目標與要求 1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a0)及其派生的概念,應用一元二次方程概念解決一些簡單題目。 2.掌握通過配方

51、法、公式法、因式分解法降次解一元二次方程,掌握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法,應用熟練掌握以上知識解決問題。 二、重點 1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題。 2.判定一個數(shù)是否是方程的根; 3.用配方法、公式法、因式分解法降次解一元二次方程。 4.運用開平方法解形如(x+m)2=n(n0)的方程,領(lǐng)會降次轉(zhuǎn)化的數(shù)學思想。 5.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題. 三、難點 1.一元二次方程配方法解題。 2.通過提出問題,建立一元二次方程的數(shù)學模型,再由一元一次方程的概念遷移到一元二次方程的概念。 3.用公式

52、法解一元二次方程時的討論。 4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n0)的方程。 5.建立一元二次方程實際問題的數(shù)學模型,方程解與實際問題解的區(qū)別。 6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。 7.知識框架 四、知識點、概念總結(jié) 1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四個特點: (1)含有一個未知數(shù); (2)且未知數(shù)次數(shù)最高次數(shù)是2; (3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程

53、,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a0)的形式,則這個方程就為一元二次方程。 (4)將方程化為一般形式:ax2+bx+c=0時,應滿足(a0) 3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a0)。 一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。 中考數(shù)學知識點總結(jié)(完整版)15 圓的初步認識 一、圓及圓的相關(guān)量的定義(28個) 1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。 2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。 3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。 4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。 5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論