版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學(xué)年湖南省常德市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.袋中有大小相同的三個白球和兩個黑球,從中任取兩個球,兩球同色的概率為()A.1/5B.2/5C.3/5D.4/5
2.設(shè)集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},則Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}
3.已知函數(shù)f(x)=㏒2x,在區(qū)間[1,4]上隨機取一個數(shù)x,使得f(x)的值介于-1到1之間的概率為A.1/3B.3/4C.1/2D.2/3
4.已知a=(1,-1),b=(-1,2),則(2a+b)×a=()A.1B.-1C.0D.2
5.設(shè)a=log32,b=log52,c=log23,則()A.a>c>bB.b>c>aC.c>b>aD.c>a>b
6.已知讓點P到橢圓的一個焦點的距離為3,則它到另一個焦點的距離為()A.2B.3C.5D.7
7.某商品降價10%,欲恢復(fù)原價,則應(yīng)提升()A.10%
B.20%
C.
D.
8.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
9.設(shè)i是虛數(shù)單位,若z/i=(i-3)/(1+i)則復(fù)數(shù)z的虛部為()A.-2B.2C.-1D.1
10.已知集合M={1,2,3,4},以={-2,2},下列結(jié)論成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}
二、填空題(10題)11.等差數(shù)列{an}中,已知a4=-4,a8=4,則a12=______.
12.
13.某機電班共有50名學(xué)生,任選一人是男生的概率為0.4,則這個班的男生共有
名。
14.
15.在△ABC中,AB=,A=75°,B=45°,則AC=__________.
16.五位同學(xué)站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.
17.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
18.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=
。
19.己知等比數(shù)列2,4,8,16,…,則2048是它的第()項。
20.雙曲線3x2-y2=3的漸近線方程是
。
三、計算題(5題)21.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
22.甲、乙兩人進行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
23.解不等式4<|1-3x|<7
24.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
25.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
四、證明題(5題)26.若x∈(0,1),求證:log3X3<log3X<X3.
27.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
28.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
29.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.
30.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
五、簡答題(5題)31.已知函數(shù):,求x的取值范圍。
32.以點(0,3)為頂點,以y軸為對稱軸的拋物線的準線與雙曲線3x2-y2+12=0的一條準線重合,求拋物線的方程。
33.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
34.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
35.已知的值
六、綜合題(5題)36.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.
38.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.
39.
40.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
參考答案
1.B
2.A并集,補集的運算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},
3.A幾何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]區(qū)間長度為1,區(qū)間[1,4]長度為3,所求概率為1/3
4.A平面向量的線性運算.因為a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1
5.D數(shù)值大小的比較.a=㏒32<㏒33=l,c=㏒23>㏒22=l,而b=㏒52<㏒1/32=a,∴b<a<c
6.D
7.C
8.A
9.C復(fù)數(shù)的運算及定義.
10.D集合的包含關(guān)系的判斷.兩個集合只有一個公共元素2,所以M∩N={2}
11.12.等差數(shù)列的性質(zhì).根據(jù)等差數(shù)列的性質(zhì)有2a8=a4+a12,a12=2a8-a4=12.
12.{-1,0,1,2}
13.20男生人數(shù)為0.4×50=20人
14.-1/2
15.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
16.72,
17.-3或7,
18.
,由于是等比數(shù)列,所以a4=q2a2,得q=。
19.第11項。由題可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
20.
,
21.
22.
23.
24.
25.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
26.
27.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
28.
29.
∴PD//平面ACE.
30.
31.
X>4
32.由題意可設(shè)所求拋物線的方程為準線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
33.
34.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
35.
∴∴則
36.
37.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為
38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年母親節(jié)《感恩母親》
- 2023年西方經(jīng)濟學(xué)本期末復(fù)習(xí)及答疑
- 高二下學(xué)期物理人教版選擇性必修第三冊“基本”粒子課件
- 2024年視角下的《六國論》:課件制作與解讀實踐
- 2024年教育改革中的《好的故事》教學(xué)課件研究
- 現(xiàn)代物流專業(yè)復(fù)習(xí)題
- M100咪喹莫特制備及藥理作用
- 統(tǒng)考版2024高考生物二輪復(fù)習(xí)專題五生命系統(tǒng)的穩(wěn)態(tài)及調(diào)節(jié)二非?!敖M合4”主觀題模擬真演練二含解析
- 2024-2025學(xué)年新教材高中地理第五章人地關(guān)系與可持續(xù)發(fā)展第一節(jié)人類面臨的主要環(huán)境問題練習(xí)含解析湘教版必修2
- 不同預(yù)緊力三元電芯膨脹應(yīng)力
- 只爭朝夕不負韶華崗位競聘述職報告
- 農(nóng)場工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計算機網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項
- 《股票入門》課件
- 《不為人知的間歇泉》課件
評論
0/150
提交評論