版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021年河北省滄州市某學(xué)校數(shù)學(xué)高職單招試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.三角函數(shù)y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
2.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
3.下列函數(shù)中,在區(qū)間(0,)上是減函數(shù)的是()A.y=sinxB.y=cosxC.y=xD.y=lgx
4.直線l:x-2y+2=0過(guò)橢圓的左焦點(diǎn)F1和上頂點(diǎn)B,該橢圓的離心率為()A.1/5
B.2/5
C.
D.
5.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測(cè)量,下列說(shuō)法正確的是()A.總體是240B.個(gè)體是每-個(gè)學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
6.橢圓x2/2+y2=1的焦距為()A.1
B.2
C.3
D.
7.A.一B.二C.三D.四
8.等差數(shù)列中,a1=3,a100=36,則a3+a98=()A.42B.39C.38D.36
9.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
10.設(shè)則f(f(-2))=()A.-1B.1/4C.1/2D.3/2
二、填空題(10題)11.1+3+5+…+(2n-b)=_____.
12.函數(shù)y=x2+5的遞減區(qū)間是
。
13.在△ABC中,若acosA=bcosB,則△ABC是
三角形。
14.函數(shù)f(x)=-X3+mx2+1(m≠0)在(0,2)內(nèi)的極大值為最大值,則m的取值范圍是________________.
15.若l與直線2x-3y+12=0的夾角45°,則l的斜線率為_(kāi)____.
16.已知等差數(shù)列{an}的公差是正數(shù),且a3·a7=-12,a4+a6=-4,則S20=_____.
17.若長(zhǎng)方體的長(zhǎng)、寬、高分別為1,2,3,則其對(duì)角線長(zhǎng)為
。
18.已知正實(shí)數(shù)a,b滿足a+2b=4,則ab的最大值是____________.
19.某校有高中生1000人,其中高一年級(jí)400人,高二年級(jí)300人,高三年級(jí)300人,現(xiàn)釆取分層抽樣的方法抽取一個(gè)容量為40的樣本,則高三年級(jí)應(yīng)抽取的人數(shù)是_____人.
20.若=_____.
三、計(jì)算題(5題)21.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
22.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
23.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
24.近年來(lái),某市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類(lèi),并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該市四類(lèi)垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
25.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、證明題(5題)26.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
27.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
28.
29.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
30.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
五、簡(jiǎn)答題(5題)31.設(shè)等差數(shù)列的前n項(xiàng)數(shù)和為Sn,已知的通項(xiàng)公式及它的前n項(xiàng)和Tn.
32.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
33.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
34.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
35.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
六、綜合題(5題)36.
37.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
39.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過(guò)橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
40.己知點(diǎn)A(0,2),5(-2,-2).(1)求過(guò)A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過(guò)橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
參考答案
1.A
2.B
3.B,故在(0,π/2)是減函數(shù)。
4.D直線與橢圓的性質(zhì),離心率公式.直線l:x-2y+2=0與x軸的交點(diǎn)F1(-2,0),與y軸的交點(diǎn)B(0,1),由于橢圓的左焦點(diǎn)為F1,上頂點(diǎn)為B,則c=2,b=1,∴a=
5.D確定總體.總體是240名學(xué)生的身高情況,個(gè)體是每一個(gè)學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.
6.B橢圓的定義.a2=1,b2=1,
7.A
8.B
9.B
10.C函數(shù)的計(jì)算.f(-2)=2-2=1/4>0,則f(f(-2))=f(1/4)=1-=1-1/2=1/2
11.n2,
12.(-∞,0]。因?yàn)槎魏瘮?shù)的對(duì)稱(chēng)軸是x=0,開(kāi)口向上,所以遞減區(qū)間為(-∞,0]。
13.等腰或者直角三角形,
14.(0,3).利用導(dǎo)數(shù)求函數(shù)的極值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因?yàn)閤∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).
15.5或,
16.180,
17.
,
18.2基本不等式求最值.由題
19.12,高三年級(jí)應(yīng)抽人數(shù)為300*40/1000=12。
20.
,
21.
22.
23.
24.
25.
26.
∴PD//平面ACE.
27.
28.
29.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
30.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所截的三棱錐的體積,即
31.(1)∵
∴又∵等差數(shù)列∴∴(2)
32.
33.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
34.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
35.
36.
37.
38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過(guò)點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b
=4,此時(shí)r=4,圓的方程為(x-4)2
+(y-4)2=16當(dāng)a=1時(shí),b
=-1,此時(shí)r=1,圓的方程為(x-1)2
+(y+1)2=1
39.
40.解:(1)直線l過(guò)A(0,2),B(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024專(zhuān)項(xiàng)加盟業(yè)務(wù)合作協(xié)議
- 城市快速路護(hù)欄設(shè)備買(mǎi)賣(mài)協(xié)議2024
- 2024屆廣東省深圳實(shí)驗(yàn)學(xué)校高考模擬考試卷數(shù)學(xué)試題試卷
- 齊齊哈爾大學(xué)《計(jì)算機(jī)網(wǎng)絡(luò)》2023-2024學(xué)年期末試卷
- 齊齊哈爾大學(xué)《鋼結(jié)構(gòu)設(shè)計(jì)原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 四居室房屋出售合同范本
- 吊車(chē)司機(jī)勞動(dòng)合同范本
- 政府采購(gòu)中小企業(yè)合同范本
- 五年級(jí)語(yǔ)文“黃道婆”說(shuō)課稿
- “擁有健康心理 成就精彩人生”發(fā)言稿
- 入團(tuán)答辯-演講模板
- 聶樹(shù)斌案-演講模板
- 只爭(zhēng)朝夕不負(fù)韶華崗位競(jìng)聘述職報(bào)告
- 農(nóng)場(chǎng)工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測(cè)真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識(shí)培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項(xiàng)
評(píng)論
0/150
提交評(píng)論