2022-2023學(xué)年吉林省延邊朝鮮族自治州名校數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第1頁
2022-2023學(xué)年吉林省延邊朝鮮族自治州名校數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第2頁
2022-2023學(xué)年吉林省延邊朝鮮族自治州名校數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第3頁
2022-2023學(xué)年吉林省延邊朝鮮族自治州名校數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第4頁
2022-2023學(xué)年吉林省延邊朝鮮族自治州名校數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.一元二次方程的解是()A. B. C. D.2.如圖是一根空心方管,則它的主視圖是()A. B. C. D.3.已知二次函數(shù)y=kx2-7x-7的圖象與x軸沒有交點,則k的取值范圍為()A.k> B.k≥且k≠0 C.k< D.k>且k≠04.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.無解5.已知二次函數(shù)的圖像與x軸沒有交點,則()A. B. C. D.6.把拋物線先向左平移1個單位,再向上平移個單位后,得拋物線,則的值是()A.-2 B.2 C.8 D.147.相鄰兩根電桿都用鍋索在地面上固定,如圖,一根電桿鋼索系在離地面4米處,另一根電桿鋼索系在離地面6米處,則中間兩根鋼索相交處點P離地面()A.2.4米B.8米C.3米D.必須知道兩根電線桿的距離才能求出點P離地面距離8.點M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±29.如圖,△ABC中,∠C=90°,∠B=30°,AC=,D、E分別在邊AC、BC上,CD=1,DE∥AB,將△CDE繞點C旋轉(zhuǎn),旋轉(zhuǎn)后點D、E對應(yīng)的點分別為D′、E′,當(dāng)點E′落在線段AD′上時,連接BE′,此時BE′的長為()A.2 B.3 C.2 D.310.圖中三視圖所對應(yīng)的直觀圖是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,四邊形內(nèi)接于,若,_______.12.如圖,E是矩形ABCD的對角線的交點,點F在邊AE上,且DF=DC,若∠ADF=25°,則∠BEC=________.13.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.如圖,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的P點處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為________米.15.正五邊形的每個內(nèi)角為______度.16.關(guān)于的一元二次方程有兩個不相等實數(shù)根,則的取值范圍是________.17.如圖所示的弧三角形,又叫萊洛三角形,是機(jī)械學(xué)家萊洛首先進(jìn)行研究的.弧三角形是這樣畫的:先畫一個正三角,然后分別以三個頂點為圓心,邊長長為半徑畫弧得到的三角形.若中間正三角形的邊長是10,則這個萊洛三角形的周長是____________.18.點(-2,5)關(guān)于原點對稱的點的坐標(biāo)是_____________.三、解答題(共66分)19.(10分)如圖,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF.求證:BF=DE.20.(6分)解方程:+3x-4=021.(6分)如圖,(1)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2),請回答:∠ADB=°,AB=.(2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.22.(8分)如圖,內(nèi)接于,,是的弦,與相交于點,平分,過點作,分別交,的延長線于點、,連接.(1)求證:是的切線;(2)求證:.23.(8分)如圖,已知二次函數(shù)的圖象經(jīng)過點.(1)求的值和圖象的頂點坐標(biāo)。(2)點在該二次函數(shù)圖象上.①當(dāng)時,求的值;②若到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍.24.(8分)如圖,△ABC中,AB=8,AC=6.(1)請用尺規(guī)作圖的方法在AB上找點D,使得△ACD∽△ABC(保留作圖痕跡,不寫作法)(2)在(1)的條件下,求AD的長25.(10分)綜合與探究如圖1,平面直角坐標(biāo)系中,直線分別與軸、軸交于點,.雙曲線與直線交于點.(1)求的值;(2)在圖1中以線段為邊作矩形,使頂點在第一象限、頂點在軸負(fù)半軸上.線段交軸于點.直接寫出點,,的坐標(biāo);(3)如圖2,在(2)題的條件下,已知點是雙曲線上的一個動點,過點作軸的平行線分別交線段,于點,.請從下列,兩組題中任選一組題作答.我選擇組題.A.①當(dāng)四邊形的面積為時,求點的坐標(biāo);②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(不與點重合),使以,,為頂點的三角形與全等?若存在,直接寫出點的坐標(biāo);若不存在,說明理由.B.①當(dāng)四邊形成為菱形時,求點的坐標(biāo);②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(不與點重合),使以,,為頂點的三角形與全等?若存在,直接寫出點的坐標(biāo);若不存在,說明理由.26.(10分)某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為(,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:時間第天123…80銷售單價(元/)49.54948.5…10(1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;(2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】這個式子先移項,變成x2=4,從而把問題轉(zhuǎn)化為求4的平方根.【詳解】移項得,x2=4開方得,x=±2,故選D.【點睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負(fù),分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細(xì)觀察方程的特點.2、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看是:大正方形里有一個小正方形,∴主視圖為:

故選:B.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖,注意看不到的線畫虛線.3、C【分析】根據(jù)二次函數(shù)圖像與x軸沒有交點說明,建立一個關(guān)于k的不等式,解不等式即可.【詳解】∵二次函數(shù)的圖象與x軸無交點,∴即解得故選C.【點睛】本題主要考查一元二次方程根的判別式和二次函數(shù)圖像與x軸交點個數(shù)的關(guān)系,掌握根的判別式是解題的關(guān)鍵.4、C【分析】解一元二次方程時,需要把二次方程化為兩個一元一次方程,此題可化為:或,解此兩個一次方程即可.【詳解】,或,,.

故選.【點睛】此題雖不難,但是告訴了學(xué)生求解的一個方法,高次的要化為低次的,多元得要化為一元的.5、C【分析】若二次函數(shù)的圖像與x軸沒有交點,則,解出關(guān)于m、n的不等式,再分別判斷即可;【詳解】解:與軸無交點,,,故A、B錯誤;同理:;故選C.【點睛】本題主要考查了拋物線與坐標(biāo)軸的交點,掌握拋物線與坐標(biāo)軸的交點是解題的關(guān)鍵.6、B【分析】將改寫成頂點式,然后按照題意將進(jìn)行平移,寫出其平移后的解析式,從而求解.【詳解】解:由題意可知拋物線先向左平移1個單位,再向上平移個單位∴∴n=2故選:B【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點坐標(biāo)的變化確定函數(shù)圖象的變化可以使求解更加簡便.7、A【分析】如圖,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得對應(yīng)高CE與BE之比,根據(jù)CD∥PE可得△BPE∽△BDC,利用對應(yīng)邊成比例可得比例式,把相關(guān)數(shù)值代入求解即可.【詳解】如圖,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故選:A.【點睛】本題考查相似三角形的應(yīng)用,平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似;正確作出輔助線構(gòu)建相似三角形并熟練掌握相似三角形的判定定理是解題關(guān)鍵.8、D【分析】根據(jù)點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數(shù)圖象的上點的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點的特征.9、B【分析】如圖,作CH⊥BE′于H,設(shè)AC交BE′于O.首先證明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解決問題.【詳解】解:如圖,作CH⊥BE′于H,設(shè)AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故選:B.【點睛】本題考查了相似三角形的綜合應(yīng)用題,涉及了旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例、相似三角形的性質(zhì)與判定等知識點,解題的關(guān)鍵是靈活運用上述知識點進(jìn)行推理求導(dǎo).10、C【分析】試題分析:主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】解:從俯視圖可以看出直觀圖的下面部分為長方體,上面部分為圓柱,且與下面的長方體的頂面的兩邊相切高度相同.只有C滿足這兩點.故選C.考點:由三視圖判斷幾何體.二、填空題(每小題3分,共24分)11、【分析】根據(jù)圓內(nèi)接四邊形的對角互補(bǔ),即可求得答案.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴.

故答案為:.【點睛】主要考查圓內(nèi)接四邊形的性質(zhì)及圓周角定理.12、115°【解析】由∠ADF求出∠CDF,再由等腰三角形的性質(zhì)得出∠DFC,從而求出∠BCE,最后用等腰三角形的性質(zhì)即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE.∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°.∵DF=DC,∴∠DFC=∠DCA=(180°-∠CDF)÷2=(180°-65°)÷2=,∴∠BCE=∠BCD﹣∠DCA=90°﹣=.∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°.故答案為115°.【點睛】本題是矩形的性質(zhì),主要考查了矩形的性質(zhì),等腰三角形的性質(zhì)和判定,解答本題的關(guān)鍵是求出∠DFC.是一道中考??嫉暮唵晤}.13、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.14、22.5【解析】根據(jù)題意畫出圖形,構(gòu)造出△PCD∽△PAB,利用相似三角形的性質(zhì)解題.解:過P作PF⊥AB,交CD于E,交AB于F,如圖所示設(shè)河寬為x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依題意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的寬度為22.5米.15、1【分析】先求出正五邊形的內(nèi)角和,再根據(jù)正五邊形的每個內(nèi)角都相等,進(jìn)而求出其中一個內(nèi)角的度數(shù).【詳解】解:正五邊形的內(nèi)角和是:(5﹣2)×180°=540°,則每個內(nèi)角是:540÷5=1°.故答案為:1.【點睛】本題主要考查多邊形的內(nèi)角和計算公式,以及正多邊形的每個內(nèi)角都相等等知識點.16、且【解析】一元二次方程的定義及判別式的意義可得a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解不等式組即可求出a的取值范圍.【詳解】∵關(guān)于x的一元二次方程ax2-3x+1=1有兩個不相等的實數(shù)根,

∴a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,

解得:a<且a≠1.

故答案是:a<且a≠1.【點睛】考查了根的判別式.一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:(1)△>1?方程有兩個不相等的實數(shù)根;(2)△=1?方程有兩個相等的實數(shù)根;(3)△<1?方程沒有實數(shù)根.17、10π【分析】根據(jù)正三角形的有關(guān)計算求出弧的半徑和圓心角,根據(jù)弧長的計算公式求解即可.【詳解】解:如圖:

∵△ABC是正三角形,

∴∠BAC=60°,

∴的長為:,

∴萊洛三角形的周長=.故答案為:.【點睛】本題考查的是正多邊形和圓的知識,理解弧三角形的概念、掌握正多邊形的中心角的求法是解題的關(guān)鍵.18、(2,-5)【解析】點(-2,5)關(guān)于原點的對稱點的點的坐標(biāo)是(2,-5).故答案為(2,-5).點睛:在平面直角坐標(biāo)系中,點P(x,y)關(guān)于原點的對稱點的坐標(biāo)是(-x,-y).三、解答題(共66分)19、詳見解析.【分析】由題意根據(jù)DE⊥AC,BF⊥AC可以證明∠DEC=∠BFA=90°,由“HL”可證Rt△ABF≌Rt△CDE可得BF=DE.【詳解】解:證明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.【點睛】本題考查全等三角形的判定以及考查全等三角形對應(yīng)邊相等的性質(zhì),本題中求證Rt△ABF≌Rt△CDE是解題的關(guān)鍵.20、=-4,=1.【分析】首先根據(jù)十字相乘法將原方程轉(zhuǎn)化成兩個多項式的積,然后進(jìn)行解方程.【詳解】解:+3x-4=0(x+4)(x-1)=0解得:=-4,=1.【點睛】本題考查解一元二次方程21、(1)80,8;(2)DC=8【分析】(1)根據(jù)平行線的性質(zhì)可得∠ADB=∠OAC=80°,即可證明△BOD∽△COA,可得,求出AD的長度,再根據(jù)角的和差關(guān)系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)過點B作BE∥AD交AC于點E,通過證明△AOD∽△EOB,可得,根據(jù)線段的比例關(guān)系,可得AB=2BE,根據(jù)勾股定理求出BE的長度,再根據(jù)勾股定理求出DC的長度即可.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案為:80,8;(2)過點B作BE∥AD交AC于點E,如圖3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴∵BO:OD=1:3,∴∵AO=6,∴EO=AO=2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.【點睛】本題考查了三角形的綜合問題,掌握平行線的性質(zhì)、相似三角形的性質(zhì)以及判定定理、勾股定理是解題的關(guān)鍵.22、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)圓的對稱性即可求出答案;(2)先證明△BCD∽△BDF,利用相似三角形的性質(zhì)可知:,利用BC=AC即可求證=AC?BF;【詳解】解:(1)∵,平分,∴,,∴是圓的直徑∵AB∥EF,∴,∵是圓的半徑,∴是的切線;(2)∵,∴,∴,∴,∴,∵,∴.【點睛】本題主要考查了圓周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì),掌握圓周角定理,切線的判定與性質(zhì),相似三角形的判定與性質(zhì)是解題的關(guān)鍵.23、(1);(2)①11;②.【解析】(1)把點P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由點Q到y(tǒng)軸的距離小于2,可得-2<m<2,在此范圍內(nèi)求n即可.【詳解】(1)解:把代入,得,解得.∵,∴頂點坐標(biāo)為.(2)①當(dāng)m=2時,n=11,②點Q到y(tǒng)軸的距離小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【點睛】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象上點的特征是解題的關(guān)鍵.24、(1)見圖(2)AD=.【解析】(1)圖形見詳解,(2)根據(jù)相似列比例式即可求解.【詳解】解:(1)見下圖(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.【點睛】本題考查了尺規(guī)作圖和相似三角形的性質(zhì),中等難度,熟悉尺規(guī)作圖步驟和相似三角形的性質(zhì)是解題關(guān)鍵.25、(1);(2),,;(3)A.①,②,,;B.①,②,,.【分析】(1)根據(jù)點在的圖象上,求得的值,從而求得的值;(2)點在直線上易求得點的坐標(biāo),證得可求得點的坐標(biāo),證得即可求得點的坐標(biāo);(3)A.①作軸,利用平行四邊的面積公式先求得點的縱坐標(biāo),從而求得答案;②分類討論,畫出相關(guān)圖形,構(gòu)造全等三角形結(jié)合軸對稱的概念即可求解;B.①作軸,根據(jù)菱形的性質(zhì)結(jié)合相似三角形的性質(zhì)先求得點的縱坐標(biāo),從而求得答案;②分類討論,畫出相關(guān)圖形,構(gòu)造全等三角形結(jié)合軸對稱的概念即可求解;【詳解】(1)在的圖象上,,,∴點的坐標(biāo)是,在的圖象上,∴,∴;(2)對于一次函數(shù),當(dāng)時,,∴點的坐標(biāo)是,當(dāng)時,,∴點的坐標(biāo)是,∴,,在矩形中,,,∴,∴,,,,∴點的坐標(biāo)是,矩形ABCD中,AB∥DG,∴∴點的坐標(biāo)是,故點,,的坐標(biāo)分別是:,,;(3)A:①過點作軸交軸于點,軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論