2022-2023學(xué)年天津市塘沽區(qū)一中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2022-2023學(xué)年天津市塘沽區(qū)一中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2022-2023學(xué)年天津市塘沽區(qū)一中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2022-2023學(xué)年天津市塘沽區(qū)一中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2022-2023學(xué)年天津市塘沽區(qū)一中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實驗可能是()A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率2.如圖,在平行四邊形ABCD中,點M為AD邊上一點,且,連接CM,對角線BD與CM相交于點N,若的面積等于3,則四邊形ABNM的面積為A.8 B.9 C.11 D.123.下列說法正確的是()A.25人中至少有3人的出生月份相同B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上C.天氣預(yù)報說明天降雨的概率為10%,則明天一定是晴天D.任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3的概率是4.若關(guān)于的方程有兩個相等的實數(shù)根,則的值是()A.-1 B.-3 C.3 D.65.“三等分角”大約是在公元前五世紀(jì)由古希臘人提出來的.借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有槽的棒,組成,兩根棒在點相連并可繞轉(zhuǎn)動,點固定,,點,可在槽中滑動,若,則的度數(shù)是()A.60° B.65° C.75° D.80°6.若點A(2,y1),B(﹣3,y2),C(﹣1,y3)三點在拋物線y=x2﹣4x﹣m的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y1>y27.已知如圖,直線,相交于點,且,添加一個條件后,仍不能判定的是().A. B. C. D.8.如圖,在△ABC中,∠A=75°,AB=6,AC=8,將△ABC沿圖中的虛線剪開,剪下的陰影三角形與原三角形不相似的是()A. B. C. D.9.如圖,一個游戲轉(zhuǎn)盤中,紅、黃、藍(lán)三個扇形的圓心角度數(shù)分別為,,.讓轉(zhuǎn)盤自由轉(zhuǎn)動,指針停止后落在黃色區(qū)域的概率是A. B. C. D.10.如圖,是用一把直尺、含60°角的直角三角板和光盤擺放而成,點為60°角與直尺交點,點為光盤與直尺唯一交點,若,則光盤的直徑是().A. B. C.6 D.3二、填空題(每小題3分,共24分)11.寫出一個你認(rèn)為的必然事件_________.12.如圖,在中,,,把繞點順時針旋轉(zhuǎn)得到,若點恰好落在邊上處,則______°.13.如圖,在正方形ABCD中,AB=4,點M在CD的邊上,且DM=1,ΔAEM與ΔADM關(guān)于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉(zhuǎn)90°得到ΔABF,連接EF,則線段EF的長為_________14.如圖,直線軸于點,且與反比例函數(shù)()及()的圖象分別交于、兩點,連接、,已知的面積為4,則________.15.?dāng)?shù)學(xué)學(xué)習(xí)應(yīng)經(jīng)歷“觀察、實驗、猜想、證明”等過程.下表是幾位數(shù)學(xué)家“拋擲硬幣”的實驗數(shù)據(jù):實驗者棣莫弗蒲豐德·摩根費勒皮爾遜羅曼諾夫斯基擲幣次數(shù)204840406140100003600080640出現(xiàn)“正面朝上”的次數(shù)10612048310949791803139699頻率0.5180.5070.5060.4980.5010.492請根據(jù)以上實驗數(shù)據(jù),估計硬幣出現(xiàn)“正面朝上”的概率為__________.(精確到0.1)16.某校共1600名學(xué)生,為了解學(xué)生最喜歡的課外體育活動情況,學(xué)校隨機抽查了200名學(xué)生,其中有92名學(xué)生表示喜歡的項目是跳繩,據(jù)此估計全校喜歡跳繩這項體育活動的學(xué)生有____________人.17.如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.18.在?ABCD中,E是AD上一點,且點E將AD分為2:3的兩部分,連接BE、AC相交于F,則是_______.三、解答題(共66分)19.(10分)如圖,銳角三角形中,,分別是,邊上的高,垂足為,.(1)證明:.(2)若將,連接起來,則與能相似嗎?說說你的理由.20.(6分)某苗圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植人3株時,平均每株盈利3元.在同樣的栽培條件下,若每盆增加1株,平均每株盈利就減少0.5元,要使每盆的盈利為10元,且每盆植入株數(shù)盡可能少,每盆應(yīng)植入多少株?21.(6分)計算:3tan30°?tan45°+2sin60°22.(8分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個即可);(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;運用:(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.23.(8分)如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.(1)求k.(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,求k的取值.24.(8分)如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.25.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B、C重合),以AD為邊做正方形ADEF,連接CF.(1)如圖①,當(dāng)點D在線段BC上時,直接寫出線段CF、BC、CD之間的數(shù)量關(guān)系.(2)如圖②,當(dāng)點D在線段BC的延長線上時,其他件不變,則(1)中的三條線段之間的數(shù)量關(guān)系還成立嗎?如成立,請予以證明,如不成立,請說明理由;(3)如圖③,當(dāng)點D在線段BC的反向延長線上時,且點A、F分別在直線BC兩側(cè),其他條件不變;若正方形ADEF的邊長為4,對角線AE、DF相交于點O,連接OC,請直接寫出OC的長度.26.(10分)如圖,點D,E分別在△ABC的AB,AC邊上,且DE∥BC,AG⊥BC于點G,與DE交于點F.已知,BC=10,AF=1.FG=2,求DE的長.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】解:A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.2、C【分析】根據(jù)平行四邊形判斷△MDN∽△CBN,利用三角形高相等,底成比例即可解題.【詳解】解:∵四邊形是平行四邊形,,∴易證△MDN∽△CBN,MD:BC=DN:BN=MN:CN=1:3,∴S△MDN:S△DNC=1:3,S△DNC:S△ABD=1:4,(三角形高相等,底成比例)∵=3,∴S△MDN=1,S△DNC=3,S△ABD=12,∴S四邊形=11,故選C.【點睛】本題考查了相似三角形的性質(zhì),相似三角形面積比等于相似比的平方,中等難度,利用三角形高相等,底成比例是解題關(guān)鍵.3、A【分析】根據(jù)概率的意義對各選項分析判斷后利用排除法求解.【詳解】A、25人中至少有3人的出生月份相同,原說法正確,故這個選項符合題意;B、任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次可能正面朝上,可能反面朝上,原說法錯誤,故這個選項不符合題意;C、天氣預(yù)報說明天的降水概率為10%,則明天不一定是晴天,原說法錯誤,故這個選項不符合題意;D、任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3有2種可能,故概率是,原說法錯誤,故這個選項不符合題意;故選:A.【點睛】本題考查了概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生,機會小也有可能發(fā)生.4、C【分析】根據(jù)方程有兩個相等的實數(shù)根,判斷出根的判別式為0,據(jù)此求解即可.【詳解】∵關(guān)于的方程有兩個相等的實數(shù)根,

∴,

解得:.故選:C.【點睛】本題考查了一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.5、D【分析】根據(jù)OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根據(jù)三角形的外角性質(zhì)可知∠DCE=∠O+∠ODC=2∠ODC據(jù)三角形的外角性質(zhì)即可求出∠ODC數(shù),進(jìn)而求出∠CDE的度數(shù).【詳解】∵,∴,,設(shè),∴,∴,∵,∴,即,解得:,.故答案為D.【點睛】本題考查等腰三角形的性質(zhì)以及三角形的外角性質(zhì),理清各個角之間的關(guān)系是解答本題的關(guān)鍵.6、C【分析】先求出二次函數(shù)的圖象的對稱軸,然后判斷出,,在拋物線上的位置,再根據(jù)二次函數(shù)的增減性求解.【詳解】解:∵二次函數(shù)中,∴開口向上,對稱軸為,∵中,∴最小,又∵,都在對稱軸的左側(cè),而在對稱軸的左側(cè),隨得增大而減小,故.∴.故選:C.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),特別是對稱軸與其兩側(cè)的增減性,熟練掌握圖象與性質(zhì)是解答關(guān)鍵.7、C【分析】根據(jù)全等三角形判定,添加或或可根據(jù)SAS或ASA或AAS得到.【詳解】添加或或可根據(jù)SAS或ASA或AAS得到,添加屬SSA,不能證.故選:C【點睛】考核知識點:全等三角形判定選擇.熟記全等三角形的全部判定是關(guān)鍵.8、D【分析】根據(jù)相似三角形的判定定理對各選項進(jìn)行逐一判定即可.【詳解】A、根據(jù)平行線截得的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形對應(yīng)邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.D、兩三角形的對應(yīng)邊不成比例,故兩三角形不相似,故本選項正確;故選:D.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關(guān)鍵.9、B【分析】求出黃區(qū)域圓心角在整個圓中所占的比例,這個比例即為所求的概率.【詳解】∵黃扇形區(qū)域的圓心角為90°,所以黃區(qū)域所占的面積比例為,即轉(zhuǎn)動圓盤一次,指針停在黃區(qū)域的概率是,故選B.【點睛】本題將概率的求解設(shè)置于轉(zhuǎn)動轉(zhuǎn)盤游戲中,考查學(xué)生對簡單幾何概型的掌握情況,既避免了單純依靠公式機械計算的做法,又體現(xiàn)了數(shù)學(xué)知識在現(xiàn)實生活、甚至娛樂中的運用,體現(xiàn)了數(shù)學(xué)學(xué)科的基礎(chǔ)性.用到的知識點為:概率=相應(yīng)的面積與總面積之比.10、A【分析】設(shè)三角板與圓的切點為C,連接,由切線長定理得出、,根據(jù)可得答案.【詳解】解:設(shè)三角板與圓的切點為C,連接OA、OB,如下圖所示:由切線長定理知,∴,在中,∴∴光盤的直徑為,故選.【點睛】本題主要考查切線的性質(zhì),掌握切線長定理和解直角三角形的應(yīng)用是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、甕中捉鱉(答案不唯一)【分析】此題根據(jù)事件的可能性舉例即可.【詳解】必然事件就是一定會發(fā)生的,例如:甕中捉鱉等,故答案:甕中捉鱉(答案不唯一).【點睛】此題考查事件的可能性:必然事件的概念.12、100【分析】作AC與DE的交點為點O,則∠AOD=∠EOC,根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,即∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°,再由AB=AC可得∠B=∠ACB=70°即A=40°,再根據(jù)三角和定理即可得∠AOD=180°-40°-40°=100°,即可解答.【詳解】如圖,作AC交DE為O則∠AOD=∠EOC根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°AB=AC∠B=∠ACB=70°∴∠A=40°∠AOD=180°-∠A-∠ADO∠AOD=180°-40°-40°=100°∠AOD=∠EOC∠1=100°【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題突破口是作AC與DE的交點為點O,即∠AOD=∠EOC.13、2【分析】連接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【詳解】如圖,連接BM.∵△AEM與△ADM關(guān)于AM所在的直線對稱,∴AE=AD,∠MAD=∠MAE.∵△ADM按照順時針方向繞點A旋轉(zhuǎn)90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE,∴∠FAB+∠BAE=∠BAE+∠MAE,∴∠FAE=∠MAB,∴△FAE≌△MAB(SAS),∴EF=BM.因為正方形ABCD的邊長為1,則MC=1-1=3,BC=1.在Rt△BCM中,∵BC2+MC2=BM2,∴12+32=BM2,解得:BM=2,∴EF=BM=2.故答案為:2.【點睛】本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.14、1.【分析】根據(jù)反比例函數(shù)的幾何意義可知:的面積為,的面積為,然后兩個三角形面積作差即可求出結(jié)果.【詳解】解:根據(jù)反比例函數(shù)的幾何意義可知:的面積為,的面積為,∴的面積為,∴,∴.故答案為1.【點睛】本題考查反比例函數(shù)的幾何意義,解題的關(guān)鍵是正確理解的幾何意義,本題屬于基礎(chǔ)題型.15、0.1【分析】由于表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,則根據(jù)頻率估計概率可得到硬幣出現(xiàn)“正面朝上”的概率為0.1.【詳解】解:因為表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,

所以估計硬幣出現(xiàn)“正面朝上”的概率為0.1.

故答案為0.1.【點睛】本題考查了利用頻率估計概率,隨實驗次數(shù)的增多,值越來越精確.16、736【分析】由題意根據(jù)樣本數(shù)據(jù)的比值和相對應(yīng)得總體數(shù)據(jù)比值相同進(jìn)行分析求解即可.【詳解】解:設(shè)全校喜歡跳繩這項體育活動的學(xué)生有m人,由題意可得:,解得.所以全校喜歡跳繩這項體育活動的學(xué)生有736人.故答案為:736.【點睛】本題考查的是通過樣本去估計總體對應(yīng)的數(shù)據(jù),熟練掌握通過樣本去估計總體對應(yīng)數(shù)據(jù)的方法是解題的關(guān)鍵.17、2【分析】先根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征及A,B兩點的橫坐標(biāo),求出A(1,1),B(4,1).再過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出S△AOC=S△BOD=×4=1.根據(jù)S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面積公式求出S梯形ABDC=(BD+AC)?CD=(1+1)×1=2,從而得出S△AOB=2.【詳解】解:∵A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標(biāo)分別是1和4,

∴當(dāng)x=1時,y=1,即A(1,1),

當(dāng)x=4時,y=1,即B(4,1).

如圖,過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,則S△AOC=S△BOD=×4=1.

∵S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,

∴S△AOB=S梯形ABDC,

∵S梯形ABDC=(BD+AC)?CD=(1+1)×1=2,

∴S△AOB=2.

故答案是:2.【點睛】主要考查了反比例函數(shù)y=中k的幾何意義,即圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.18、或【分析】分兩種情況,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】解:①當(dāng)時,∵四邊形ABCD是平行四邊形,,,②當(dāng)時,同理可得,,故答案為或.【點睛】考查的是相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)能,理由見解析.【分析】(1)根據(jù)已知利用有兩個角相等的三角形相似判定即可;

(2)根據(jù)第一問可得到AD:AE=AC:AB,有一組公共角∠A,則可根據(jù)兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似進(jìn)行判定.【詳解】證明:.證明:∵,分別是,邊上的高,∴.∵,∴.若將,連接起來,則與能相似嗎?說說你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【點睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.20、4株【分析】根據(jù)已知假設(shè)每盆花苗增加株,則每盆花苗有株,得出平均單株盈利為元,由題意得求出即可。【詳解】解:設(shè)每盆花苗增加株,則每盆花苗有株,平均單株盈利為:元,由題意得:.化簡,整理,.解這個方程,得,,則,,每盆植入株數(shù)盡可能少,盆應(yīng)植4株.答:每盆應(yīng)植4株.【點睛】此題考查了一元二次方程的應(yīng)用,根據(jù)每盆花苗株數(shù)平均單株盈利總盈利得出方程是解題關(guān)鍵.21、【分析】先計算出特殊的三角函數(shù)值,按照運算順序計算即可.【詳解】解:原式

.【點睛】本題主要考查特殊銳角的三角函數(shù)值,解題的關(guān)鍵是熟記特殊銳角的三角函數(shù)值.22、(1)詳見解析;(2)詳見解析;(3)4【分析】(1)根據(jù)“相似對角線”的定義,利用方格紙的特點可找到D點的位置.(2)通過導(dǎo)出對應(yīng)角相等證出∽,根據(jù)四邊形ABCD的“相似對角線”的定義即可得出BD是四邊形ABCD的“相似對角線”.(3)根據(jù)四邊形“相似對角線”的定義,得出∽,利用對應(yīng)邊成比例,結(jié)合三角形面積公式即可求.【詳解】解:(1)如圖1所示.(2)證明:平分,∽∴BD是四邊形的“相似對角線”.(3)是四邊形的“相似對角線”,三角形與三角形相似.又∽過點作垂足為則【點睛】本題考查相似三角形的判定與性質(zhì)的綜合應(yīng)用及解直角三角形,對于這種新定義閱讀材料題目讀,懂題意是解答此題的關(guān)鍵.23、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把點A坐標(biāo)代入一次函數(shù)關(guān)系式可求出a的值,確定點A的坐標(biāo),再代入反比例函數(shù)關(guān)系式可求出k的值,(2)一次函數(shù)與反比例函數(shù)聯(lián)立,可求出交點B的坐標(biāo),再根據(jù)圖象可得出當(dāng)y1>y2時,x的取值范圍.(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,就是x2+4x﹣k=1有實數(shù)根,根據(jù)根的判別式求出k的取值范圍.【詳解】(1)一次函數(shù)y1=x+4的圖象過A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函數(shù)y2=得,k=﹣3;(2)由(1)得反比例函數(shù),由題意得,,解得,,,∴點B(﹣3,1)當(dāng)y1>y2,即一次函數(shù)的圖象位于反比例函數(shù)圖象上方時,自變量的取值范圍為:﹣3<x<﹣1;(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,即,方程=x+4有實數(shù)根,也就是x2+4x﹣k=1有實數(shù)根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范圍為:k≥﹣4且k≠1.【點睛】此題考查待定系數(shù)法求函數(shù)解析式,函數(shù)圖象與二元一次方程組的關(guān)系,一次函數(shù)與反比例函數(shù)交點的確定,正確理解題意是解題的關(guān)鍵.24、AB=2,BC=.【解析】要求AB和BC,由已知∠B、∠C為特殊角,故可構(gòu)造直角三角形來輔助求解.過點A作AD⊥BC于D,首先在Rt△ACD中求出CD和AD,然后在Rt△ABD中求出BD和AB,從而BC=BD+DC可求.【詳解】解:作三角形的高AD.在Rt△ACD中,∠ACD=45°,AC=2,∴AD=CD=.在Rt△ABD中,∠B=30°,AD=,∴BD=,AB=.∴CB=BD+CD=+.故答案為AB=2,BC=.【點睛】本題考查解直角三角形,解答本題的關(guān)鍵是熟練掌握勾股定理與特殊角的三角函數(shù)值.25、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,證明詳見解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得;(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC;(3)先證明△BAD≌△CA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論