(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)講義11《圓錐曲線的方程與性質(zhì)》(解析版)_第1頁
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)講義11《圓錐曲線的方程與性質(zhì)》(解析版)_第2頁
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)講義11《圓錐曲線的方程與性質(zhì)》(解析版)_第3頁
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)講義11《圓錐曲線的方程與性質(zhì)》(解析版)_第4頁
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)講義11《圓錐曲線的方程與性質(zhì)》(解析版)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

11圓錐曲線的方程與性質(zhì)核心考點(diǎn)讀高考設(shè)問知考法命題解讀圓錐曲線的定義及標(biāo)準(zhǔn)方程【2020新課標(biāo)1理4】已知SKIPIF1<0為拋物線SKIPIF1<0:SKIPIF1<0上一點(diǎn),點(diǎn)SKIPIF1<0到SKIPIF1<0的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則SKIPIF1<0()1.圓錐曲線的方程與幾何性質(zhì)是高考的重點(diǎn),多以選擇題、填空題或解答題的第一問的形式命題.2.直線與圓錐曲線的位置關(guān)系是命題的熱點(diǎn),尤其是有關(guān)弦長計(jì)算及存在性問題,運(yùn)算量大,能力要求高,突出方程思想、轉(zhuǎn)化、化歸與分類討論思想方法的考查.【2020新課標(biāo)1文11】設(shè)SKIPIF1<0是雙曲線SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上且SKIPIF1<0,則SKIPIF1<0的面積為()【2019新課標(biāo)1理10文12】已知橢圓C的焦點(diǎn)為SKIPIF1<0,過F2的直線與C交于A,B兩點(diǎn).若SKIPIF1<0,SKIPIF1<0,則C的方程為()【2020新課標(biāo)3理11】設(shè)雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上一點(diǎn),且SKIPIF1<0.若SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0()【2019新課標(biāo)3文理15】設(shè)SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn)且在第一象限.若SKIPIF1<0為等腰三角形,則SKIPIF1<0的坐標(biāo)為________.圓錐曲線的幾何性質(zhì)【2020新課標(biāo)3文14】設(shè)雙曲線SKIPIF1<0:SKIPIF1<0的一條漸近線為SKIPIF1<0,則SKIPIF1<0的離心率為_________.【2020新課標(biāo)1理15】已知F為雙曲線SKIPIF1<0的右焦點(diǎn),A為C的右頂點(diǎn),B為C上的點(diǎn),且BF垂直于x軸.若AB的斜率為3,則C的離心率為_______.【2019新課標(biāo)1理16】已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點(diǎn).若SKIPIF1<0,SKIPIF1<0,則C的離心率為________.【2016新課標(biāo)3文12理11】已知SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的左焦點(diǎn),SKIPIF1<0分別為SKIPIF1<0的左右頂點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0軸.過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與線段SKIPIF1<0交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,若直線SKIPIF1<0經(jīng)過SKIPIF1<0的中點(diǎn),則SKIPIF1<0的離心率為()直線與圓錐曲線的綜合問題【2013新課標(biāo)1理10】已知橢圓的右焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交橢圓于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則橢圓SKIPIF1<0的方程為()【2020新高考全國13】斜率為SKIPIF1<0的直線過拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn),且與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0=_______.【2019新課標(biāo)1理19】已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,斜率為SKIPIF1<0的直線l與C的交點(diǎn)為A,B,與x軸的交點(diǎn)為P.(1)若SKIPIF1<0,求l的方程;(2)若SKIPIF1<0,求SKIPIF1<0.【2020新高考全國Ⅱ卷21】已知橢圓SKIPIF1<0:SKIPIF1<0過點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為其左頂點(diǎn),且SKIPIF1<0的斜率為SKIPIF1<0,(1)求SKIPIF1<0的方程;(2)點(diǎn)SKIPIF1<0為橢圓上任意一點(diǎn),求SKIPIF1<0的面積的最大值.(2020·天津卷)已知橢圓eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的一個頂點(diǎn)為A(0,-3),右焦點(diǎn)為F,且|OA|=|OF|,其中O為原點(diǎn).(1)求橢圓的方程;(2)已知點(diǎn)C滿足3eq\o(OC,\s\up6(→))=eq\o(OF,\s\up6(→)),點(diǎn)B在橢圓上(B異于橢圓的頂點(diǎn)),直線AB與以C為圓心的圓相切于點(diǎn)P,且P為線段AB的中點(diǎn),求直線AB的方程.核心考點(diǎn)一圓錐曲線的定義及標(biāo)準(zhǔn)方程1.圓錐曲線的定義(1)橢圓:|MF1|+|MF2|=2a(2a>|F1F2|);(2)雙曲線:||MF1|-|MF2||=2a(2a<|F1F2|);(3)拋物線:|MF|=d(d為M點(diǎn)到準(zhǔn)線的距離).溫馨提醒應(yīng)用圓錐曲線定義解題時,易忽視定義中隱含條件導(dǎo)致錯誤.2.圓錐曲線的標(biāo)準(zhǔn)方程(1)橢圓:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)(焦點(diǎn)在x軸上)或eq\f(y2,a2)+eq\f(x2,b2)=1(a>b>0)(焦點(diǎn)在y軸上);(2)雙曲線:eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)(焦點(diǎn)在x軸上)或eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)(焦點(diǎn)在y軸上);(3)拋物線:y2=2px,y2=-2px,x2=2py,x2=-2py(p>0).1.【2020新課標(biāo)1理4】已知SKIPIF1<0為拋物線SKIPIF1<0:SKIPIF1<0上一點(diǎn),點(diǎn)SKIPIF1<0到SKIPIF1<0的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則SKIPIF1<0()A.2 B.3 C.6 D.9【解析】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選C.2.【2020新課標(biāo)1文11】設(shè)SKIPIF1<0是雙曲線SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上且SKIPIF1<0,則SKIPIF1<0的面積為()A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.2【解析】方法1:不妨設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,即SKIPIF1<0是以P為直角頂點(diǎn)的直角三角形,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選B.方法2:點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0(得到點(diǎn)SKIPIF1<0的縱坐標(biāo)),所以SKIPIF1<0SKIPIF1<0,故選B.方法3:由二級結(jié)論焦點(diǎn)三角形SKIPIF1<0的面積為SKIPIF1<0,故選B.3.【2019新課標(biāo)1理10文12】已知橢圓C的焦點(diǎn)為SKIPIF1<0,過F2的直線與C交于A,B兩點(diǎn).若SKIPIF1<0,SKIPIF1<0,則C的方程為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解法1】可以運(yùn)用下面方法求解:如圖,由已知可設(shè)SKIPIF1<0,則SKIPIF1<0,由橢圓的定義有SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,由余弦定理得SKIPIF1<0,又SKIPIF1<0互補(bǔ),SKIPIF1<0,兩式消去SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0所求橢圓方程為SKIPIF1<0,故選B.【解法2】如圖,由已知可設(shè)SKIPIF1<0,則SKIPIF1<0,由橢圓的定義有SKIPIF1<0.在SKIPIF1<0中,由余弦定理推論得SKIPIF1<0.在SKIPIF1<0中,由余弦定理得SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0所求橢圓方程為SKIPIF1<0,故選B.【解法3】由SKIPIF1<0利用向量或相似三角形的性質(zhì)得點(diǎn)SKIPIF1<0,代入橢圓方程得SKIPIF1<0,所以,SKIPIF1<0,故選B.【解法4】由橢圓的極坐標(biāo)方程得SKIPIF1<0得SKIPIF1<0,再利用余弦定理得出關(guān)于SKIPIF1<0的方程.4.【2020新課標(biāo)2理19】已知橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)SKIPIF1<0與拋物線SKIPIF1<0的焦點(diǎn)重合,SKIPIF1<0的中心與SKIPIF1<0的頂點(diǎn)重合.過SKIPIF1<0且與SKIPIF1<0軸垂直的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0.(1)求SKIPIF1<0的離心率;(2)設(shè)SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的公共點(diǎn),若SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0的標(biāo)準(zhǔn)方程.【解析】(1)SKIPIF1<0,SKIPIF1<0軸且與橢圓SKIPIF1<0相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,拋物線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,因此橢圓SKIPIF1<0的離心率為SKIPIF1<0;(2)由(1)知SKIPIF1<0,SKIPIF1<0,橢圓SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0并整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),由拋物線的定義可得SKIPIF1<0,解得SKIPIF1<0.因此,曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.1.【2020新課標(biāo)3文7理5】設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),直線SKIPIF1<0與拋物線C:SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的焦點(diǎn)坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】因?yàn)镾KIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,根據(jù)拋物線的對稱性可以確定SKIPIF1<0,所以SKIPIF1<0,代入拋物線方程SKIPIF1<0,求得SKIPIF1<0,所以其焦點(diǎn)坐標(biāo)為SKIPIF1<0,故選B.2.【2020新課標(biāo)3理11】設(shè)雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上一點(diǎn),且SKIPIF1<0.若SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0()A.1 B.2 C.4 D.8【解析】方法1:SKIPIF1<0,SKIPIF1<0,根據(jù)雙曲線的定義可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選A.方法2:SKIPIF1<0的面積為SKIPIF1<0,離心率SKIPIF1<0,所以SKIPIF1<0,故選A.3.【2019新課標(biāo)3文理15】設(shè)SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn)且在第一象限.若SKIPIF1<0為等腰三角形,則SKIPIF1<0的坐標(biāo)為___________.【解析】由已知可得SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0(SKIPIF1<0舍去),SKIPIF1<0的坐標(biāo)為SKIPIF1<0.核心考點(diǎn)二圓錐曲線的幾何性質(zhì)圓錐曲線的重要性質(zhì):(1)橢圓、雙曲線中a,b,c之間的關(guān)系①在橢圓中:a2=b2+c2;離心率為e=eq\f(c,a)=eq\r(1-\f(b2,a2)).②在雙曲線中:c2=a2+b2;離心率為e=eq\f(c,a)=eq\r(1+\f(b2,a2)).(2)雙曲線的漸近線方程與焦點(diǎn)坐標(biāo)①雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的漸近線方程為y=±eq\f(b,a)x;焦點(diǎn)坐標(biāo)F1(-c,0),F(xiàn)2(c,0).②雙曲線eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)的漸近線方程為y=±eq\f(a,b)x,焦點(diǎn)坐標(biāo)F1(0,-c),F(xiàn)2(0,c).(3)拋物線的焦點(diǎn)坐標(biāo)與準(zhǔn)線方程①拋物線y2=2px(p>0)的焦點(diǎn)Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(p,2),0)),準(zhǔn)線方程x=-eq\f(p,2).②拋物線x2=2py(p>0)的焦點(diǎn)Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(p,2))),準(zhǔn)線方程y=-eq\f(p,2).1.【2020新課標(biāo)1理15】已知F為雙曲線SKIPIF1<0的右焦點(diǎn),A為C的右頂點(diǎn),B為C上的點(diǎn),且BF垂直于x軸.若AB的斜率為3,則C的離心率為_______.【解析】聯(lián)立SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.依題可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,變形得SKIPIF1<0,因此SKIPIF1<0的離心率為SKIPIF1<0.故答案為SKIPIF1<0.2.【2016新課標(biāo)3文12理11】已知SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的左焦點(diǎn),SKIPIF1<0分別為SKIPIF1<0的左右頂點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0軸.過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與線段SKIPIF1<0交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,若直線SKIPIF1<0經(jīng)過SKIPIF1<0的中點(diǎn),則SKIPIF1<0的離心率為()(A)SKIPIF1<0 (B)SKIPIF1<0 (C)SKIPIF1<0 (D)SKIPIF1<0【解析】解法1:由題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,分別令SKIPIF1<0與SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,所以橢圓離心率為SKIPIF1<0,故選A。解法2:設(shè)SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,由題意可知SKIPIF1<0,SKIPIF1<0和SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0,化簡得SKIPIF1<0,則SKIPIF1<0的離心率SKIPIF1<0.故選A.3.(多選題)已知橢圓Ω:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0),則下列結(jié)論正確的是()A.若a=2b,則橢圓Ω的離心率為eq\f(\r(2),2)B.若橢圓Ω的離心率為eq\f(1,2),則eq\f(b,a)=eq\f(\r(3),2)C.若點(diǎn)F1,F(xiàn)2分別為橢圓Ω的左、右焦點(diǎn),直線l過點(diǎn)F1且與橢圓Ω交于A,B兩點(diǎn),則△ABF2的周長為4aD.若點(diǎn)A1,A2分別為橢圓Ω的左、右頂點(diǎn),點(diǎn)P為橢圓Ω上異于點(diǎn)A1,A2的任意一點(diǎn),則直線PA1,PA2的斜率之積為-eq\f(b2,a2)【解析】若a=2b,則c=eq\r(3)b,所以e=eq\f(\r(3),2),A不正確;若e=eq\f(1,2),則a=2c,b=eq\r(3)c,所以eq\f(b,a)=eq\f(\r(3),2),B正確;根據(jù)橢圓的定義易知C正確;設(shè)點(diǎn)P(x0,y0),則eq\f(xeq\o\al(2,0),a2)+eq\f(yeq\o\al(2,0),b2)=1,易知A1(-a,0),A2(a,0),所以直線PA1,PA2的斜率之積是eq\f(y0,x0+a)·eq\f(y0,x0-a)=eq\f(yeq\o\al(2,0),xeq\o\al(2,0)-a2)=eq\f(b2\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(xeq\o\al(2,0),a2))),xeq\o\al(2,0)-a2)=-eq\f(b2,a2),D正確.故選BCD.1.【2020新課標(biāo)3文14】設(shè)雙曲線SKIPIF1<0:SKIPIF1<0的一條漸近線為SKIPIF1<0,則SKIPIF1<0的離心率為_________.【解析】由雙曲線方程SKIPIF1<0可得其焦點(diǎn)在SKIPIF1<0軸上,因?yàn)槠湟粭l漸近線為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案為SKIPIF1<0.2.【2019新課標(biāo)1理16】已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點(diǎn).若SKIPIF1<0,SKIPIF1<0,則C的離心率為____________.【解析】如圖,由SKIPIF1<0得SKIPIF1<0又SKIPIF1<0得OA是三角形SKIPIF1<0的中位線,即SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0則SKIPIF1<0有SKIPIF1<0,又OA與OB都是漸近線,得SKIPIF1<0又SKIPIF1<0,得SKIPIF1<0.又漸近線OB的斜率為SKIPIF1<0,所以該雙曲線的離心率為SKIPIF1<0.3.(多選題)雙曲線C:eq\f(x2,4)-eq\f(y2,2)=1的右焦點(diǎn)為F,點(diǎn)P在雙曲線C的一條漸近線上,O為坐標(biāo)原點(diǎn),則下列說法正確的是()A.雙曲線C的離心率為eq\f(\r(6),2)B.雙曲線eq\f(y2,4)-eq\f(x2,8)=1與雙曲線C的漸近線相同C.若PO⊥PF,則△PFO的面積為eq\r(2)D.|PF|的最小值為2【解析】對于A,因?yàn)閍=2,b=eq\r(2),所以c=eq\r(a2+b2)=eq\r(6),所以雙曲線C的離心率為eq\f(\r(6),2),所以A正確;對于B,它們的漸近線都是直線y=±eq\f(\r(2),2)x,所以B正確;對于C,結(jié)合PO⊥PF,點(diǎn)P在雙曲線C的一條漸近線上,不妨設(shè)點(diǎn)P在漸近線y=eq\f(\r(2),2)x上,則直線PF的方程為y-0=-eq\r(2)(x-eq\r(6)),即y=-eq\r(2)(x-eq\r(6)),由eq\b\lc\{(\a\vs4\al\co1(y=-\r(2)(x-\r(6)),,y=\f(\r(2),2)x,))解得eq\b\lc\{(\a\vs4\al\co1(x=\f(2\r(6),3),,y=\f(2\r(3),3),))所以點(diǎn)Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2\r(6),3),\f(2\r(3),3))),所以△PFO的面積S=eq\f(1,2)×eq\r(6)×eq\f(2\r(3),3)=eq\r(2),所以C正確;對于D,因?yàn)辄c(diǎn)F(eq\r(6),0),雙曲線C的一條漸近線為直線y=eq\f(\r(2),2)x,所以|PF|的最小值就是點(diǎn)F到漸近線的距離,為eq\r(2),所以D錯誤.故選ABC.核心考點(diǎn)三直線與圓錐曲線綜合問題1.直線與圓錐曲線相交的弦:設(shè)而不求,利用根與系數(shù)的關(guān)系,進(jìn)行整體代入.即當(dāng)斜率為k,直線與圓錐曲線交于A(x1,y1),B(x2,y2)時,|AB|=eq\r(1+k2)|x1-x2|=eq\r(1+k2)eq\r((x1+x2)2-4x1x2)=eq\r(1+\f(1,k2))eq\r((y1+y2)2-4y1y2).2.過拋物線焦點(diǎn)的弦:拋物線y2=2px(p>0)過焦點(diǎn)F的弦AB,若A(x1,y1),B(x2,y2),則x1x2=eq\f(p2,4),y1y2=-p2,弦長|AB|=x1+x2+p.1.【2020新高考全國13】斜率為SKIPIF1<0的直線過拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn),且與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0=_______.【解析】SKIPIF1<0,代入拋物線方程得SKIPIF1<0,SKIPIF1<0,故答案為SKIPIF1<0.2.【2019新課標(biāo)1理19】已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,斜率為SKIPIF1<0的直線l與C的交點(diǎn)為A,B,與x軸的交點(diǎn)為P.(1)若SKIPIF1<0,求l的方程;(2)若SKIPIF1<0,求SKIPIF1<0.【解析】(1)設(shè)直線SKIPIF1<0方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由拋物線焦半徑公式可知:SKIPIF1<0SKIPIF1<0聯(lián)立SKIPIF1<0,得SKIPIF1<0則SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0直線SKIPIF1<0的方程為:SKIPIF1<0,即SKIPIF1<0(2)設(shè)直線SKIPIF1<0方程為:SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0則SKIPIF1<03.【2020新高考全國Ⅱ卷21】已知橢圓SKIPIF1<0:SKIPIF1<0過點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為其左頂點(diǎn),且SKIPIF1<0的斜率為SKIPIF1<0,(1)求SKIPIF1<0的方程;(2)點(diǎn)SKIPIF1<0為橢圓上任意一點(diǎn),求SKIPIF1<0的面積的最大值.【解析】(1)由題意可知直線AM的方程為:SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,解得SKIPIF1<0,所以SKIPIF1<0,橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的方程為:SKIPIF1<0.(2)設(shè)與直線SKIPIF1<0平行的直線方程為:SKIPIF1<0,如圖所示,當(dāng)直線與橢圓相切時,與SKIPIF1<0距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為SKIPIF1<0,此時SKIPIF1<0的面積取得最大值.聯(lián)立直線方程SKIPIF1<0與橢圓方程SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,與AM距離比較遠(yuǎn)的直線方程:SKIPIF1<0,直線AM方程為:SKIPIF1<0,點(diǎn)N到直線AM的距離即兩平行線之間的距離,即SKIPIF1<0,由兩點(diǎn)之間距離公式可得SKIPIF1<0.所以△AMN的面積的最大值為:SKIPIF1<0.1.【2013新課標(biāo)1理10】已知橢圓的右焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交橢圓于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則橢圓SKIPIF1<0的方程為()A、SKIPIF1<0 B、SKIPIF1<0QUOTE C、SKIPIF1<0 D、SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0=-2,SKIPIF1<0①SKIPIF1<0②由①減②得:SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,又SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,又9=SKIPIF1<0=SKIPIF1<0,解得SKIPIF1<0=9,SKIPIF1<0=18,∴橢圓方程為SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論