版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二章矩陣及其運(yùn)算矩陣的概念矩陣的運(yùn)算逆矩陣矩陣分塊法1第二章矩陣及其運(yùn)算矩陣的概念1第一節(jié)線性方程組和矩陣矩陣概念的引入(線性方程組)矩陣的定義小結(jié)、思考題2第一節(jié)線性方程組和矩陣矩陣概念的引入(線性方程組)2設(shè)線性方程組則稱此方程組為非
齊次線性方程組;此時(shí)稱方程組為齊次線性方程組.1、非齊次與齊次線性方程組的概念一、矩陣概念的引入-線性方程組3設(shè)線性方程組則稱此方程組為非齊次線性方程組;此時(shí)稱方程組為2.線性方程組的解取決于系數(shù)常數(shù)項(xiàng)42.線性方程組的解取決于系數(shù)常數(shù)項(xiàng)4對(duì)線性方程組的研究可轉(zhuǎn)化為對(duì)這張表的研究.線性方程組的系數(shù)與常數(shù)項(xiàng)按原位置可排為3.某航空公司在A,B,C,D四城市之間開辟了若干航線,如圖所示表示了四城市間的航班圖,如果從A到B有航班,則用帶箭頭的線連接A與B.5對(duì)線性方程組的線性方程組的系數(shù)與常數(shù)項(xiàng)按原位置可排為3.某四城市間的航班圖情況常用表格來表示:發(fā)站到站其中表示有航班.為了便于計(jì)算,把表中的改成1,空白地方填上0,就得到一個(gè)數(shù)表:6四城市間的航班圖情況常用表格來表示:發(fā)站到站其中這個(gè)數(shù)表反映了四城市間交通聯(lián)接情況.7這個(gè)數(shù)表反映了四城市間交通聯(lián)接情況.74.田忌賽馬84.田忌賽馬899
由個(gè)數(shù)排成的行列的數(shù)表稱為矩陣.簡(jiǎn)稱矩陣.記作二、矩陣的定義10由個(gè)數(shù)稱為矩陣.簡(jiǎn)稱矩簡(jiǎn)記為元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣.11簡(jiǎn)記為元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣?yán)缡且粋€(gè)實(shí)矩陣,是一個(gè)復(fù)矩陣,是一個(gè)矩陣,是一個(gè)矩陣,是一個(gè)矩陣.12例如是一個(gè)實(shí)矩陣,是一個(gè)矩陣與行列式有本質(zhì)的區(qū)別,行列式是一個(gè)算式,其行數(shù)和列數(shù)相同,一個(gè)數(shù)字行列式經(jīng)過計(jì)算可求得其值,而矩陣僅僅是一個(gè)數(shù)表,它的行數(shù)和列數(shù)可以不同.13矩陣與行列式有本質(zhì)的區(qū)別,行列式是一個(gè)算式,13例如是一個(gè)3階方陣.三、特殊矩陣及與矩陣有關(guān)的概念行數(shù)與列數(shù)都等于的矩陣,稱為階方陣.也可記作對(duì)于方陣,可以計(jì)算其行列式,但要注意:方陣和方陣的行列式是不同的含義.14例如是一個(gè)3階方陣.三、特殊矩陣及與矩陣有關(guān)的概念行數(shù)與列只有一列的矩陣稱為列矩陣(或列向量).(2)只有一行的矩陣稱為行矩陣(或行向量).15只有一列的矩陣稱為列矩陣(或列向量).(2)只有一行的矩陣稱
稱為對(duì)角矩陣(或?qū)顷嚕?(3)形如的方陣,不全為0記作16稱為對(duì)角(3)形如(4)方陣稱為單位矩陣(或單位陣).全為117(4)方陣稱為單位矩陣(或單位陣).全為117
(5)元素全為零的矩陣稱為零矩陣,零矩陣記作或.注意不同階數(shù)的零矩陣是不相等的.例如18(5)元素全為零的矩陣稱為零矩陣,零注A=O|A|=0|A|=0A=O若|A|=0,稱A為奇異矩陣;對(duì)于n
階方陣A若|A|=0,稱A為非奇異矩陣;19A=O|A|=0|A|=0A=O若|A|=0,(6)設(shè)A
=
(
aij)為n階方陣,對(duì)任意i,j,如果aij=
aji都成立,則稱A為對(duì)稱矩陣;如果aij=
–aji都成立,則稱A為反對(duì)稱矩陣;例如:A為對(duì)稱矩陣,B為反對(duì)稱矩陣.20(6)設(shè)A=(aij)為n階2.兩個(gè)矩陣為同型矩陣,并且對(duì)應(yīng)元素相等,即則稱矩陣相等,記作例如為同型矩陣.(7)同型矩陣與矩陣相等的概念1.兩個(gè)矩陣的行數(shù)相等,列數(shù)相等時(shí),稱為同型矩陣.212.兩個(gè)矩陣為同型矩例1間的關(guān)系式線性變換.(8)線性變換與矩陣之間關(guān)系:22例1間的關(guān)系式線性變換.(8)線性變換與矩陣之間關(guān)系:22系數(shù)矩陣線性變換與矩陣之間關(guān)系:存在著一一對(duì)應(yīng)關(guān)系.23系數(shù)矩陣線性變換與矩陣之間關(guān)系:存在著一一對(duì)應(yīng)關(guān)系.23若線性變換為稱之為恒等變換.對(duì)應(yīng)
單位陣.24若線性變換為稱之為恒等變換.對(duì)應(yīng)單位陣.24線性變換對(duì)應(yīng)這是一個(gè)以原點(diǎn)為中心旋轉(zhuǎn)角的旋轉(zhuǎn)變換.25線性變換對(duì)應(yīng)這是一個(gè)以原點(diǎn)為中心25三、小結(jié)(1)矩陣的概念26三、小結(jié)(1)矩陣的概念26(2)特殊矩陣方陣行矩陣與列矩陣;單位矩陣;對(duì)角矩陣;零矩陣.27(2)特殊矩陣方陣行矩陣與列矩陣;單位矩陣;對(duì)角矩陣;零矩思考題矩陣與行列式的有何區(qū)別?28思考題矩陣與行列式的有何區(qū)別?28思考題解答
矩陣與行列式有本質(zhì)的區(qū)別,行列式是一個(gè)算式,一個(gè)數(shù)字行列式經(jīng)過計(jì)算可求得其值,而矩陣僅僅是一個(gè)數(shù)表,它的行數(shù)和列數(shù)可以不同.29思考題解答矩陣與行列式有本質(zhì)的區(qū)別,行列式第二章矩陣及其運(yùn)算矩陣的概念矩陣的運(yùn)算逆矩陣矩陣分塊法30第二章矩陣及其運(yùn)算矩陣的概念1第一節(jié)線性方程組和矩陣矩陣概念的引入(線性方程組)矩陣的定義小結(jié)、思考題31第一節(jié)線性方程組和矩陣矩陣概念的引入(線性方程組)2設(shè)線性方程組則稱此方程組為非
齊次線性方程組;此時(shí)稱方程組為齊次線性方程組.1、非齊次與齊次線性方程組的概念一、矩陣概念的引入-線性方程組32設(shè)線性方程組則稱此方程組為非齊次線性方程組;此時(shí)稱方程組為2.線性方程組的解取決于系數(shù)常數(shù)項(xiàng)332.線性方程組的解取決于系數(shù)常數(shù)項(xiàng)4對(duì)線性方程組的研究可轉(zhuǎn)化為對(duì)這張表的研究.線性方程組的系數(shù)與常數(shù)項(xiàng)按原位置可排為3.某航空公司在A,B,C,D四城市之間開辟了若干航線,如圖所示表示了四城市間的航班圖,如果從A到B有航班,則用帶箭頭的線連接A與B.34對(duì)線性方程組的線性方程組的系數(shù)與常數(shù)項(xiàng)按原位置可排為3.某四城市間的航班圖情況常用表格來表示:發(fā)站到站其中表示有航班.為了便于計(jì)算,把表中的改成1,空白地方填上0,就得到一個(gè)數(shù)表:35四城市間的航班圖情況常用表格來表示:發(fā)站到站其中這個(gè)數(shù)表反映了四城市間交通聯(lián)接情況.36這個(gè)數(shù)表反映了四城市間交通聯(lián)接情況.74.田忌賽馬374.田忌賽馬8389
由個(gè)數(shù)排成的行列的數(shù)表稱為矩陣.簡(jiǎn)稱矩陣.記作二、矩陣的定義39由個(gè)數(shù)稱為矩陣.簡(jiǎn)稱矩簡(jiǎn)記為元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣.40簡(jiǎn)記為元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣?yán)缡且粋€(gè)實(shí)矩陣,是一個(gè)復(fù)矩陣,是一個(gè)矩陣,是一個(gè)矩陣,是一個(gè)矩陣.41例如是一個(gè)實(shí)矩陣,是一個(gè)矩陣與行列式有本質(zhì)的區(qū)別,行列式是一個(gè)算式,其行數(shù)和列數(shù)相同,一個(gè)數(shù)字行列式經(jīng)過計(jì)算可求得其值,而矩陣僅僅是一個(gè)數(shù)表,它的行數(shù)和列數(shù)可以不同.42矩陣與行列式有本質(zhì)的區(qū)別,行列式是一個(gè)算式,13例如是一個(gè)3階方陣.三、特殊矩陣及與矩陣有關(guān)的概念行數(shù)與列數(shù)都等于的矩陣,稱為階方陣.也可記作對(duì)于方陣,可以計(jì)算其行列式,但要注意:方陣和方陣的行列式是不同的含義.43例如是一個(gè)3階方陣.三、特殊矩陣及與矩陣有關(guān)的概念行數(shù)與列只有一列的矩陣稱為列矩陣(或列向量).(2)只有一行的矩陣稱為行矩陣(或行向量).44只有一列的矩陣稱為列矩陣(或列向量).(2)只有一行的矩陣稱
稱為對(duì)角矩陣(或?qū)顷嚕?(3)形如的方陣,不全為0記作45稱為對(duì)角(3)形如(4)方陣稱為單位矩陣(或單位陣).全為146(4)方陣稱為單位矩陣(或單位陣).全為117
(5)元素全為零的矩陣稱為零矩陣,零矩陣記作或.注意不同階數(shù)的零矩陣是不相等的.例如47(5)元素全為零的矩陣稱為零矩陣,零注A=O|A|=0|A|=0A=O若|A|=0,稱A為奇異矩陣;對(duì)于n
階方陣A若|A|=0,稱A為非奇異矩陣;48A=O|A|=0|A|=0A=O若|A|=0,(6)設(shè)A
=
(
aij)為n階方陣,對(duì)任意i,j,如果aij=
aji都成立,則稱A為對(duì)稱矩陣;如果aij=
–aji都成立,則稱A為反對(duì)稱矩陣;例如:A為對(duì)稱矩陣,B為反對(duì)稱矩陣.49(6)設(shè)A=(aij)為n階2.兩個(gè)矩陣為同型矩陣,并且對(duì)應(yīng)元素相等,即則稱矩陣相等,記作例如為同型矩陣.(7)同型矩陣與矩陣相等的概念1.兩個(gè)矩陣的行數(shù)相等,列數(shù)相等時(shí),稱為同型矩陣.502.兩個(gè)矩陣為同型矩例1間的關(guān)系式線性變換.(8)線性變換與矩陣之間關(guān)系:51例1間的關(guān)系式線性變換.(8)線性變換與矩陣之間關(guān)系:22系數(shù)矩陣線性變換與矩陣之間關(guān)系:存在著一一對(duì)應(yīng)關(guān)系.52系數(shù)矩陣線性變換與矩陣之間關(guān)系:存在著一一對(duì)應(yīng)關(guān)系.23若線性變換為稱之為恒等變換.對(duì)應(yīng)
單位陣.53若線性變換為稱之為恒等變換.對(duì)應(yīng)單位陣.24線性變換對(duì)應(yīng)這是一個(gè)以原點(diǎn)為中心旋轉(zhuǎn)角的旋轉(zhuǎn)變換.54線性變換對(duì)應(yīng)這是一個(gè)以原點(diǎn)為中心25三、小結(jié)(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)能力測(cè)試試卷A卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)每日一練試卷A卷含答案
- 四川省網(wǎng)約配送員職業(yè)技能競(jìng)賽理論考試題及答案
- 三年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)匯編及答案集錦
- 2024建筑施工協(xié)議代理業(yè)務(wù)規(guī)范稿
- 2024投標(biāo)專用協(xié)議樣本解析
- 基于網(wǎng)絡(luò)空間安全的個(gè)人信息保護(hù)研究
- 2024年復(fù)婚二次離婚協(xié)議規(guī)范樣本
- 2024專業(yè)紅娘服務(wù)會(huì)員協(xié)議
- 2024年度高品質(zhì)防盜門供應(yīng)協(xié)議范例
- 消防安全-情系你我他
- 短視頻的拍攝與剪輯
- 產(chǎn)品設(shè)計(jì)-淺談智能藍(lán)牙音響的外觀創(chuàng)新設(shè)計(jì)
- 江蘇省南京江寧聯(lián)合體2023-2024學(xué)年八年級(jí)上學(xué)期期中考試英語試卷
- 快速康復(fù)外科(ERAS)護(hù)理
- 醫(yī)療機(jī)構(gòu)安全檢查表
- 第六章-巷道支護(hù)01
- 應(yīng)急管理法律法規(guī)及國(guó)標(biāo)行標(biāo)清單
- 監(jiān)理規(guī)劃、監(jiān)理細(xì)則審批表
- 香菇種植示范基地項(xiàng)目可行性策劃實(shí)施方案
- 施工現(xiàn)場(chǎng)材料使用明細(xì)表
評(píng)論
0/150
提交評(píng)論