




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為()A. B. C. D.2.設(shè),則,則()A. B. C. D.3.下列命題為真命題的個(gè)數(shù)是()(其中,為無(wú)理數(shù))①;②;③.A.0 B.1 C.2 D.34.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件5.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.已知,,分別為內(nèi)角,,的對(duì)邊,,,的面積為,則()A. B.4 C.5 D.7.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.8.已知,,為圓上的動(dòng)點(diǎn),,過(guò)點(diǎn)作與垂直的直線交直線于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.9.已知復(fù)數(shù)滿足,則()A. B. C. D.10.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.11.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.612.函數(shù)的圖象大致為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若恒成立,則的取值范圍是___________.14.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為______.15.高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為.16.在的二項(xiàng)展開式中,所有項(xiàng)的系數(shù)的和為________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過(guò)點(diǎn)(1,),A,B分別為橢圓C的左、右頂點(diǎn),過(guò)左焦點(diǎn)F的直線l交橢圓C于D,E兩點(diǎn)(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.18.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.19.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為,且與短軸兩端點(diǎn)的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.20.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.21.(12分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).22.(10分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)只有一個(gè)零點(diǎn),求正實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.2、A【解析】
根據(jù)換底公式可得,再化簡(jiǎn),比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點(diǎn)睛】本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.3、C【解析】
對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)?,則又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.4、A【解析】
首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應(yīng)用是解決本題的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點(diǎn)睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于常考題型.6、D【解析】
由正弦定理可知,從而可求出.通過(guò)可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點(diǎn)睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過(guò)正弦定理結(jié)合已知條件,得到角的正弦值余弦值.7、B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.8、A【解析】
由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,.故選:A.【點(diǎn)睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.9、A【解析】
根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.10、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.11、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).12、D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo)得到,討論和兩種情況,計(jì)算時(shí),函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案?!驹斀狻恳?yàn)椋?,因?yàn)?,所?當(dāng),即時(shí),,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時(shí),因?yàn)樵谏蠁握{(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.14、【解析】
利用三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn),求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當(dāng)時(shí),,則當(dāng)時(shí),得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時(shí)要注意單調(diào)區(qū)間為定義域的一個(gè)子區(qū)間.15、20【解析】
根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.16、1【解析】
設(shè),令,的值即為所有項(xiàng)的系數(shù)之和?!驹斀狻吭O(shè),令,所有項(xiàng)的系數(shù)的和為。【點(diǎn)睛】本題主要考查二項(xiàng)式展開式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2).【解析】
(1)利用離心率和橢圓經(jīng)過(guò)的點(diǎn)建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標(biāo)之間的關(guān)系,聯(lián)立方程結(jié)合韋達(dá)定理可求.【詳解】解:(1)設(shè)焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設(shè)l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點(diǎn)睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進(jìn)行求解,面積問題的合理轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)椋?,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(?。瑒t直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.19、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時(shí),的斜率為0時(shí),的斜率存在且不為0時(shí),設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長(zhǎng)公式以及四邊形的面積公式計(jì)算即可.【詳解】(1)由焦點(diǎn)與短軸兩端點(diǎn)的連線相互垂直及橢圓的對(duì)稱性可知,,∵過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時(shí),直線的斜率為0,此時(shí)(ii)當(dāng)直線的斜率為零時(shí),.(iii)當(dāng)直線的斜率存在且不等于零時(shí),設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長(zhǎng)度也可以用點(diǎn)到直線的距離和勾股定理計(jì)算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過(guò)聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運(yùn)用函數(shù)知識(shí)求解;本題是難題.20、(1);(2)見解析.【解析】
(1)利用獨(dú)立事件的概率乘法公式可計(jì)算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計(jì)算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【詳解】(1)記“第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為【點(diǎn)睛】本題考查概率的計(jì)算,同時(shí)也考查了隨機(jī)變量分布列,考查計(jì)算能力,屬于基礎(chǔ)題.21、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人 車租用合同范例
- 個(gè)體裝修合同樣本
- 京東授權(quán)合同范例
- 2024年精密箱體系統(tǒng)項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 做美容合伙合同范例
- 清明節(jié)經(jīng)典詩(shī)文誦讀活動(dòng)總結(jié)模版
- 醫(yī)療行業(yè)中的區(qū)塊鏈與數(shù)字貨幣解決方案
- 公司股權(quán)出讓合同范例
- 從零開始構(gòu)建基于區(qū)塊鏈的商業(yè)信任體系
- 健康產(chǎn)業(yè)下的醫(yī)護(hù)職業(yè)發(fā)展前景
- DB21T 1724-2016 日本落葉松和長(zhǎng)白落葉松速生豐產(chǎn)大徑木林培育技術(shù)規(guī)程
- 《pmp項(xiàng)目管理培訓(xùn)》課件
- 機(jī)械設(shè)計(jì)基礎(chǔ)B知到智慧樹章節(jié)測(cè)試課后答案2024年秋哈爾濱工程大學(xué)
- 建筑工程招投標(biāo)階段造價(jià)控制策略
- 云南省職業(yè)技能大賽(健康照護(hù)賽項(xiàng))理論參考試題及答案
- 紅樓夢(mèng)課件19回
- 新建年產(chǎn)25000噸塑膠場(chǎng)地用品生產(chǎn)項(xiàng)目環(huán)評(píng)報(bào)告表
- 生態(tài)修復(fù)場(chǎng)地平整施工方案
- 自然辯證法論述題146題帶答案(可打印版)
- 民辦非企業(yè)單位信息公開制度
- 工程合伙人協(xié)議書范文模板下載電子版
評(píng)論
0/150
提交評(píng)論