版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二十四章
圓24.2點(diǎn)和圓、直線和圓的位置關(guān)系第1課時(shí)1.理解并掌握點(diǎn)和圓的三種位置關(guān)系.(重點(diǎn))2.理解不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓及其運(yùn)用.(重點(diǎn))3.了解三角形的外接圓和三角形外心的概念.4.了解反證法的證明思想.學(xué)習(xí)目標(biāo)導(dǎo)入新課
你玩過(guò)飛鏢嗎?它的靶子是由一些圓組成的,你知道擊中靶子上不同位置的成績(jī)是如何計(jì)算的嗎?情境引入想一想問(wèn)題1:觀察下圖中點(diǎn)和圓的位置關(guān)系有哪幾種?.o.C....B..A.點(diǎn)與圓的位置關(guān)系有三種:點(diǎn)在圓內(nèi),點(diǎn)在圓上,點(diǎn)在圓外.點(diǎn)和圓的位置關(guān)系問(wèn)題2:設(shè)點(diǎn)到圓心的距離為d,圓的半徑為r,量一量在點(diǎn)和圓三種不同位置關(guān)系時(shí),d與r有怎樣的數(shù)量關(guān)系?點(diǎn)P在⊙O內(nèi)
點(diǎn)P在⊙O上點(diǎn)P在⊙O外dddrPdPrd
Prd<rr=>r反過(guò)來(lái),由d與r的數(shù)量關(guān)系,怎樣判定點(diǎn)與圓的位置關(guān)系呢?1.⊙O的半徑為10cm,A、B、C三點(diǎn)到圓心的距離分別為8cm、10cm、12cm,則點(diǎn)A、B、C與⊙O的位置關(guān)系是:點(diǎn)A在
;點(diǎn)B在
;點(diǎn)C在
.
練一練:圓內(nèi)圓上圓外2.圓心為O的兩個(gè)同心圓,半徑分別為1和2,若OP=,則點(diǎn)P在()A.大圓內(nèi)
B.小圓內(nèi)C.小圓外
D.大圓內(nèi),小圓外oD要點(diǎn)歸納rPdPrd
PrdRrP點(diǎn)P在⊙O內(nèi)
d<r點(diǎn)P在⊙O上
d=r點(diǎn)P在⊙O外
d>r
點(diǎn)P在圓環(huán)內(nèi)
r≤d≤R數(shù)形結(jié)合:位置關(guān)系數(shù)量關(guān)系例1:如圖,已知矩形ABCD的邊AB=3,AD=4.(1)以A為圓心,4為半徑作⊙A,則點(diǎn)B、C、D與⊙A的位置關(guān)系如何?解:AD=4=r,故D點(diǎn)在⊙A上
AB=3<r,故B點(diǎn)在⊙A內(nèi)
AC=5>r,故C點(diǎn)在⊙A外(2)若以A點(diǎn)為圓心作⊙A,使B、C、D三點(diǎn)中至少有一點(diǎn)在圓內(nèi),且至少有一點(diǎn)在圓外,求⊙A的半徑r的取值范圍?(直接寫出答案)3<r<5變式:如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,1),P是x軸上一點(diǎn),要使△PAO為等腰三角形,滿足條件的P有幾個(gè)?求出點(diǎn)P的坐標(biāo).問(wèn)題1如何過(guò)一個(gè)點(diǎn)A作一個(gè)圓?過(guò)點(diǎn)A可以作多少個(gè)圓?
合作探究·····以不與A點(diǎn)重合的任意一點(diǎn)為圓心,以這個(gè)點(diǎn)到A點(diǎn)的距離為半徑畫圓即可;可作無(wú)數(shù)個(gè)圓.A過(guò)不共線三點(diǎn)作圓問(wèn)題2:如何過(guò)兩點(diǎn)A、B作一個(gè)圓?過(guò)兩點(diǎn)可以作多少個(gè)圓?
····AB作線段AB的垂直平分線,以其上任意一點(diǎn)為圓心,以這點(diǎn)和點(diǎn)A或B的距離為半徑畫圓即可;可作無(wú)數(shù)個(gè)圓.問(wèn)題3:過(guò)不在同一直線上的三點(diǎn)能不能確定一個(gè)圓?ABCDEGF●o經(jīng)過(guò)B,C兩點(diǎn)的圓的圓心在線段BC的垂直平分線上.經(jīng)過(guò)A,B,C三點(diǎn)的圓的圓心應(yīng)該在這兩條垂直平分線的交點(diǎn)O的位置.經(jīng)過(guò)A,B兩點(diǎn)的圓的圓心在線段AB的垂直平分線上.有且只有位置關(guān)系定理:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓.ABCDEGF●o歸納總結(jié)
已知:不在同一直線上的三點(diǎn)A、B、C.
求作:⊙O,使它經(jīng)過(guò)點(diǎn)A、B、C.作法:1、連結(jié)AB,作線段AB的垂直平分線MN;2、連接AC,作線段AC的垂直平分線EF,交MN于點(diǎn)O;3、以O(shè)為圓心,OB為半徑作圓。所以⊙O就是所求作的圓.ONMFEABC練一練問(wèn)題4:現(xiàn)在你知道怎樣將一個(gè)如圖所示的破損的圓盤復(fù)原了嗎?方法:1、在圓弧上任取三點(diǎn)A、B、C;2、作線段AB、BC的垂直平分線,其交點(diǎn)O即為圓心;3、以點(diǎn)O為圓心,OC長(zhǎng)為半徑作圓.⊙O即為所求.ABCO
某一個(gè)城市在一塊空地新建了三個(gè)居民小區(qū),它們分別為A、B、C,且三個(gè)小區(qū)不在同一直線上,要想規(guī)劃一所中學(xué),使這所中學(xué)到三個(gè)小區(qū)的距離相等。請(qǐng)問(wèn)同學(xué)們這所中學(xué)建在哪個(gè)位置?你怎么確定這個(gè)位置呢?●●●BAC針對(duì)訓(xùn)練試一試:
已知△ABC,用直尺與圓規(guī)作出過(guò)A、B、C三點(diǎn)的圓.ABCO三角形的外接圓及外心1.外接圓⊙O叫做△ABC的________,△ABC叫做⊙O的____________.到三角形三個(gè)頂點(diǎn)的距離相等.2.三角形的外心:定義:●OABC外接圓內(nèi)接三角形三角形外接圓的圓心叫做三角形的外心.作圖:三角形三邊中垂線的交點(diǎn).性質(zhì):要點(diǎn)歸納判一判:下列說(shuō)法是否正確(1)任意的一個(gè)三角形一定有一個(gè)外接圓()(2)任意一個(gè)圓有且只有一個(gè)內(nèi)接三角形()(3)經(jīng)過(guò)三點(diǎn)一定可以確定一個(gè)圓()(4)三角形的外心到三角形各頂點(diǎn)的距離相等()√××√畫一畫:分別畫一個(gè)銳角三角形、直角三角形和鈍角三角形,再畫出它們的外接圓,觀察并敘述各三角形與它的外心的位置關(guān)系.銳角三角形的外心位于三角形內(nèi),直角三角形的外心位于直角三角形斜邊的中點(diǎn),鈍角三角形的外心位于三角形外.ABC●OABCCAB┐●O●O
經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓;外接圓的圓心叫三角形的外心;三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等.要點(diǎn)歸納例2:如圖,將△AOB置于平面直角坐標(biāo)系中,O為原點(diǎn),∠ABO=60°,若△AOB的外接圓與y軸交于點(diǎn)D(0,3).(1)求∠DAO的度數(shù);(2)求點(diǎn)A的坐標(biāo)和△AOB外接圓的面積.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;典例精析(2)求點(diǎn)A的坐標(biāo)和△AOB外接圓的面積.(2)∵點(diǎn)D的坐標(biāo)是(0,3),∴OD=3.在直角△AOD中,OA=OD·tan∠ADO=
,AD=2OD=6,∴點(diǎn)A的坐標(biāo)是(,0).∵∠AOD=90°,∴AD是圓的直徑,∴△AOB外接圓的面積是9π.方法總結(jié):圖形中求三角形外接圓的面積時(shí),關(guān)鍵是確定外接圓的直徑(或半徑)長(zhǎng)度.例3
如圖,在△ABC中,O是它的外心,BC=24cm,O到BC的距離是5cm,求△ABC的外接圓的半徑.解:連接OB,過(guò)點(diǎn)O作OD⊥BC.D則OD=5cm,在Rt△OBD中即△ABC的外接圓的半徑為13cm.思考:經(jīng)過(guò)同一條直線上的三個(gè)點(diǎn)能作出一個(gè)圓嗎?l1l2ABCP如圖,假設(shè)過(guò)同一條直線l上三點(diǎn)A、B、C可以作一個(gè)圓,設(shè)這個(gè)圓的圓心為P,那么點(diǎn)P既在線段AB的垂直平分線l1上,又在線段BC的垂直平分線l2上,即點(diǎn)P為l1與l2的交點(diǎn),而l1⊥l,l2⊥l這與我們以前學(xué)過(guò)的“過(guò)一點(diǎn)有且只有一條直線與已知直線垂直”相矛盾,所以過(guò)同一條直線上的三點(diǎn)不能作圓.反證法要點(diǎn)歸納先假設(shè)命題的結(jié)論不成立,然后由此經(jīng)過(guò)推理得出矛盾(常與公理、定理、定義或已知條件相矛盾),由矛盾判定假設(shè)不正確,從而得到原命題成立,這種方法叫做反證法.反證法的一般步驟假設(shè)命題的結(jié)論不成立從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理,得出矛盾由矛盾判定假設(shè)不正確,從而肯定命題的結(jié)論正確例4求證:在一個(gè)三角形中,至少有一個(gè)內(nèi)角小于或等于60°.已知:△ABC求證:△ABC中至少有一個(gè)內(nèi)角小于或等于60°.證明:假設(shè)
,則
?!?/p>
,即
.這與
矛盾.假設(shè)不成立.∴
.△ABC中沒(méi)有一個(gè)內(nèi)角小于或等于60°∠A>60°,∠B>60°,∠C>60°∠A+∠B+∠C>180°三角形的內(nèi)角和為180度△ABC中至少有一個(gè)內(nèi)角小于或等于60°.∠A+∠B+∠C>60°+60°+60°=180°1.如圖,請(qǐng)找出圖中圓的圓心,并寫出你找圓心的方法?ABCO當(dāng)堂練習(xí)
2.正方形ABCD的邊長(zhǎng)為2cm,以A為圓心2cm為半徑作⊙A,則點(diǎn)B在⊙A
;點(diǎn)C在⊙A
;點(diǎn)D在⊙A
.上外上3.⊙O的半徑r為5㎝,O為原點(diǎn),點(diǎn)P的坐標(biāo)為(3,4),則點(diǎn)P與⊙O的位置關(guān)系為()A.在⊙O內(nèi)
B.在⊙O上
C.在⊙O外
D.在⊙O上或⊙O外B4.判斷:(1)經(jīng)過(guò)三點(diǎn)一定可以作圓()(2)三角形的外心就是這個(gè)三角形兩邊垂直平分線的交點(diǎn)()(3)三角形的外心到三邊的距離相等()(4)等腰三角形的外心一定在這個(gè)三角形內(nèi)()√×××5.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,則它的外接圓半徑=
.
56.如圖,△ABC內(nèi)接于⊙O,若∠OAB=20°,則∠C的度數(shù)是________.70°7.如圖,在5×5正方形網(wǎng)格中,一條圓弧經(jīng)過(guò)A,B,C三點(diǎn),那么這條圓弧所在圓的圓心是()MRQABCPA.點(diǎn)P B.點(diǎn)QC.點(diǎn)RD.點(diǎn)MB8.小明不慎把家里的圓形玻璃打碎了,其中四塊碎片如圖所示,為配到與原來(lái)大小一樣的圓形玻璃,小明帶到商店去的一塊玻璃碎片應(yīng)該是()A.第①塊B.第④塊C.第③塊D.第②塊D·2cm3cm9.畫出由所有到已知點(diǎn)的距離大于或等于2cm并且小于或等于3cm的點(diǎn)組成的圖形.O110.如圖,已知Rt△ABC中,若AC=12cm,BC=5cm,求的外接圓半徑.
CBAO解:設(shè)Rt△ABC的外接圓的外心為O,連接OC,則OA=OB=OC.∴O是斜邊AB的中點(diǎn).∵∠C=900,AC=12cm,BC=5cm.∴AB=13cm,OA=6.5cm.故Rt△AB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年魯人新版九年級(jí)歷史上冊(cè)階段測(cè)試試卷含答案
- 2025年冀教版選修3地理上冊(cè)階段測(cè)試試卷含答案
- 2025年滬科版選修歷史上冊(cè)月考試卷含答案
- 2025年統(tǒng)編版2024必修1歷史下冊(cè)月考試卷含答案
- 2025年粵教滬科版七年級(jí)科學(xué)上冊(cè)階段測(cè)試試卷含答案
- 二零二五年度國(guó)際貿(mào)易融資合同-利率計(jì)算與利息收益分配4篇
- 二零二五年度民商法擔(dān)保合同法律咨詢與培訓(xùn)合同4篇
- 二零二五年度苗圃基地苗木良種選育合作合同3篇
- 二零二五年度原創(chuàng)音樂(lè)作品錄制授權(quán)合同4篇
- 二零二五年度模板木枋庫(kù)存管理及分銷合同3篇
- (高清版)JTGT 3360-01-2018 公路橋梁抗風(fēng)設(shè)計(jì)規(guī)范
- 小紅書(shū)違禁詞清單(2024年)
- 胰島素注射的護(hù)理
- 云南省普通高中學(xué)生綜合素質(zhì)評(píng)價(jià)-基本素質(zhì)評(píng)價(jià)表
- 2024年消防產(chǎn)品項(xiàng)目營(yíng)銷策劃方案
- 聞道課件播放器
- 03軸流式壓氣機(jī)b特性
- 五星級(jí)酒店收入測(cè)算f
- 大數(shù)據(jù)與人工智能ppt
- 人教版八年級(jí)下冊(cè)第一單元英語(yǔ)Unit1 單元設(shè)計(jì)
- GB/T 9109.5-2017石油和液體石油產(chǎn)品動(dòng)態(tài)計(jì)量第5部分:油量計(jì)算
評(píng)論
0/150
提交評(píng)論