2023學年浙江省桐鄉(xiāng)第一中學高三考前熱身數(shù)學試卷(含解析)_第1頁
2023學年浙江省桐鄉(xiāng)第一中學高三考前熱身數(shù)學試卷(含解析)_第2頁
2023學年浙江省桐鄉(xiāng)第一中學高三考前熱身數(shù)學試卷(含解析)_第3頁
2023學年浙江省桐鄉(xiāng)第一中學高三考前熱身數(shù)學試卷(含解析)_第4頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023學年高考數(shù)學模擬測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A,B=,則A∩B=A. B. C. D.2.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c3.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣124.已知復數(shù)滿足,則()A. B.2 C.4 D.35.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或6.已知數(shù)列的前項和為,且,,則()A. B. C. D.7.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,8.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.9.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.10.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.11.函數(shù)的部分圖象大致為()A. B.C. D.12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的部分圖象如圖所示,則的值為____________.14.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.15.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.16.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))18.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.19.(12分)某商場為改進服務質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.21.(12分)中,內(nèi)角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.22.(10分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】

先解A、B集合,再取交集?!绢}目詳解】,所以B集合與A集合的交集為,故選A【答案點睛】一般地,把不等式組放在數(shù)軸中得出解集。2、A【答案解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【題目詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【答案點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎知識,考查運算求解能力,是基礎題.3、D【答案解析】

分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【題目詳解】設,聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【答案點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎題。4、A【答案解析】

由復數(shù)除法求出,再由模的定義計算出模.【題目詳解】.故選:A.【答案點睛】本題考查復數(shù)的除法法則,考查復數(shù)模的運算,屬于基礎題.5、A【答案解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【題目詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:

①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.

故選:A.【答案點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質(zhì)等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.6、C【答案解析】

根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【題目詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【答案點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.7、B【答案解析】

根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【題目詳解】對于A選項,當,,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【答案點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.8、C【答案解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【題目詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【答案點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎題.9、D【答案解析】

取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【題目詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【答案點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.10、B【答案解析】

考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【題目詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【答案點睛】本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.11、B【答案解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!绢}目詳解】,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【答案點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。12、A【答案解析】

將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【題目詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【答案點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【題目詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【答案點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.14、【答案解析】

由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結(jié)果.【題目詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【答案點睛】此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題.15、36010【答案解析】

列出所有租船的情況,分別計算出租金,由此能求出結(jié)果.【題目詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【答案點睛】本小題主要考查分類討論的數(shù)學思想方法,考查實際應用問題,屬于基礎題.16、【答案解析】

由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【題目詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【答案點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【答案解析】

(1)首先對函數(shù)求導,根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【題目詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【答案點睛】本題主要考查了利用導數(shù)研究函數(shù)的極值點和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.18、(1);(2)證明見解析;(3)是,理由見解析.【答案解析】

(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設點,根據(jù)導數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數(shù)量積得出,則問題得以證明;(3)設直線,直線,、、,推導出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.【題目詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)設直線,直線,、、,則,設向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【答案點睛】本題考查了圓錐曲線的和直線的位置與關系,考查鈍角三角形的判定以及三角形面積為定值的求解,關鍵是聯(lián)立方程,構(gòu)造方程,利用韋達定理,以及向量的關系,得到關于斜率的方程,計算量大,屬于難題.19、有的把握認為顧客購物體驗的滿意度與性別有關;.【答案解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關;獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【題目詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關.獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個.其中僅有1人是女顧客的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論