2022-2023學(xué)年寧夏銀川二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第1頁(yè)
2022-2023學(xué)年寧夏銀川二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第2頁(yè)
2022-2023學(xué)年寧夏銀川二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第3頁(yè)
2022-2023學(xué)年寧夏銀川二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第4頁(yè)
2022-2023學(xué)年寧夏銀川二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(xiàn)的左、右頂點(diǎn)分別是,雙曲線(xiàn)的右焦點(diǎn)為,點(diǎn)在過(guò)且垂直于軸的直線(xiàn)上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時(shí),點(diǎn)恰好在雙曲線(xiàn)上,則該雙曲線(xiàn)的方程為()A. B.C. D.2.已知,滿(mǎn)足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.3.函數(shù)的值域?yàn)椋ǎ〢. B. C. D.4.設(shè),滿(mǎn)足約束條件,則的最大值是()A. B. C. D.5.若直線(xiàn)l不平行于平面α,且l?α,則()A.α內(nèi)所有直線(xiàn)與l異面B.α內(nèi)只存在有限條直線(xiàn)與l共面C.α內(nèi)存在唯一的直線(xiàn)與l平行D.α內(nèi)存在無(wú)數(shù)條直線(xiàn)與l相交6.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為()A. B. C. D.7.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.8.在中,為邊上的中點(diǎn),且,則()A. B. C. D.9.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說(shuō):丙被錄用了;乙說(shuō):甲被錄用了;丙說(shuō):我沒(méi)被錄用.若這三人中僅有一人說(shuō)法錯(cuò)誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無(wú)法確定誰(shuí)被錄用了10.總體由編號(hào)01,,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.0111.雙曲線(xiàn)x2a2A.y=±2x B.y=±3x12.設(shè)雙曲線(xiàn)(,)的一條漸近線(xiàn)與拋物線(xiàn)有且只有一個(gè)公共點(diǎn),且橢圓的焦距為2,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為_(kāi)__________.14.函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_____.15.下圖是一個(gè)算法的流程圖,則輸出的x的值為_(kāi)______.16.已知曲線(xiàn),點(diǎn),在曲線(xiàn)上,且以為直徑的圓的方程是.則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個(gè)零點(diǎn),證明:.18.(12分)已知數(shù)列滿(mǎn)足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.20.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線(xiàn)段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值21.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.22.(10分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再?gòu)倪@人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

點(diǎn)的坐標(biāo)為,,展開(kāi)利用均值不等式得到最值,將點(diǎn)代入雙曲線(xiàn)計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時(shí),的外接圓面積取得最小值,也等價(jià)于取得最大值,因?yàn)椋?,所以,?dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,此時(shí)最大,此時(shí)的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線(xiàn)的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線(xiàn)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.2、B【解析】

由目標(biāo)函數(shù)的最大值為9,我們可以畫(huà)出滿(mǎn)足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫(huà)出,滿(mǎn)足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線(xiàn)與直線(xiàn)的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫(huà)出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線(xiàn)的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線(xiàn)方程,消去,后,即可求出參數(shù)的值.3、A【解析】

由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域?yàn)?故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對(duì)象角的取值范圍,考查計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】

作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過(guò)平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線(xiàn):在可行域內(nèi)平移當(dāng)過(guò)點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.5、D【解析】

通過(guò)條件判斷直線(xiàn)l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線(xiàn)l不平行于平面α,且l?α可知直線(xiàn)l與平面α相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線(xiàn)與平面的位置關(guān)系,直線(xiàn)與直線(xiàn)的位置關(guān)系,難度不大.6、D【解析】

根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個(gè)選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到再將圖像向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.7、A【解析】

令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問(wèn)題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來(lái)表示和是本題的關(guān)鍵,屬于中檔題.8、A【解析】

由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A【點(diǎn)睛】在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.9、C【解析】

假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說(shuō)法錯(cuò)誤,乙,丙的說(shuō)法正確,滿(mǎn)足題意,若乙被錄用了,則甲、乙的說(shuō)法錯(cuò)誤,丙的說(shuō)法正確,不符合題意,若丙被錄用了,則乙、丙的說(shuō)法錯(cuò)誤,甲的說(shuō)法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點(diǎn)睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.10、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個(gè)個(gè)體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.11、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線(xiàn)方程求漸近線(xiàn)方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線(xiàn)方程為y=±bax點(diǎn)睛:已知雙曲線(xiàn)方程x2a212、B【解析】

設(shè)雙曲線(xiàn)的漸近線(xiàn)方程為,與拋物線(xiàn)方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進(jìn)而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線(xiàn)的漸近線(xiàn)方程為,代入拋物線(xiàn)方程得,依題意,,橢圓的焦距,,雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查橢圓和雙曲線(xiàn)的標(biāo)準(zhǔn)方程、雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),要注意雙曲線(xiàn)焦點(diǎn)位置,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線(xiàn)與平面所成角的計(jì)算.對(duì)于這類(lèi)題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14、【解析】

先求得與關(guān)于軸對(duì)稱(chēng)的函數(shù),將問(wèn)題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對(duì)分成三種情況進(jìn)行分類(lèi)討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對(duì)稱(chēng)的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),所以與的圖象有交點(diǎn),方程有解.時(shí)符合題意.時(shí)轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過(guò)定點(diǎn)的直線(xiàn),其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿(mǎn)足題意;若,設(shè),相切時(shí),切點(diǎn)的坐標(biāo)為,則,解得,切線(xiàn)斜率為,由圖可知,當(dāng),即時(shí),,的圖象有交點(diǎn),此時(shí),與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱(chēng)點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對(duì)稱(chēng)性,函數(shù)與方程等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識(shí).15、1【解析】

利用流程圖,逐次進(jìn)行運(yùn)算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時(shí)14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別,“還原現(xiàn)場(chǎng)”是求解這類(lèi)問(wèn)題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).16、【解析】

設(shè)所在直線(xiàn)方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線(xiàn)方程,兩式作差可得,從而可得直線(xiàn)的斜率,聯(lián)立直線(xiàn)與的方程,由,利用弦長(zhǎng)公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過(guò)圓心點(diǎn),設(shè)所在直線(xiàn)方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線(xiàn)與的方程:又,即,即又因?yàn)?,則有即∴.故答案為:【點(diǎn)睛】本題考查了直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、弦長(zhǎng)公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令通過(guò)二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因?yàn)?,?dāng)時(shí),,,所以在區(qū)間遞減;當(dāng)時(shí),,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點(diǎn)為1(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因?yàn)?,所以,方程關(guān)于的方程在有兩個(gè)零點(diǎn),由的圖象可知,,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點(diǎn)存在性定理確定參數(shù)范圍,屬于難題.18、(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)椋?,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比為.故(2)由(1)知,所以所以【點(diǎn)睛】本題考查等比數(shù)列的定義及通項(xiàng)公式、等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個(gè)整數(shù),當(dāng)時(shí),則M中僅有的整數(shù)為;當(dāng)時(shí),則M中僅有的整數(shù)為,進(jìn)而求解即可.【詳解】解:(1)因?yàn)?所以,當(dāng),即時(shí),;當(dāng),即時(shí),;當(dāng),即時(shí),.(2)由得,當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;綜上,滿(mǎn)足題意的k的范圍為【點(diǎn)睛】本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類(lèi)討論思想與運(yùn)算能力.20、(1)證明見(jiàn)解析(2)【解析】

(1)要證明線(xiàn)面平行,需證明線(xiàn)線(xiàn)平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線(xiàn)為軸,過(guò)作平行于的直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線(xiàn)為軸,過(guò)作平行于的直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查線(xiàn)面平行的證明和空間坐標(biāo)法解決二面角的問(wèn)題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線(xiàn)面平行,或證明面面平行時(shí),關(guān)鍵是證明線(xiàn)線(xiàn)平行,所以做輔助線(xiàn)或證明時(shí),需考慮構(gòu)造中位線(xiàn)或平行四邊形,這些都是證明線(xiàn)線(xiàn)平行的常方法.21、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論