甘肅省天水高中名校2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
甘肅省天水高中名校2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
甘肅省天水高中名校2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
甘肅省天水高中名校2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
甘肅省天水高中名校2022年高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.2.正四棱錐的五個(gè)頂點(diǎn)在同一個(gè)球面上,它的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為,則它的外接球的表面積為()A. B. C. D.3.某校8位學(xué)生的本次月考成績(jī)恰好都比上一次的月考成績(jī)高出50分,則以該8位學(xué)生這兩次的月考成績(jī)各自組成樣本,則這兩個(gè)樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)4.設(shè)集合則()A. B. C. D.5.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)8.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.9.已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2510.若為純虛數(shù),則z=()A. B.6i C. D.2011.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過(guò)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.612.對(duì)兩個(gè)變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖象在處的切線斜率為,則______.14.已知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為_(kāi)_____.15.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為_(kāi)_______.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______,的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).18.(12分)已知,且.(1)請(qǐng)給出的一組值,使得成立;(2)證明不等式恒成立.19.(12分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.20.(12分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.21.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.22.(10分)橢圓:()的離心率為,它的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點(diǎn),過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,求證:直線恒過(guò)一個(gè)定點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.2.C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計(jì)算長(zhǎng)度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點(diǎn)睛】本題考查了四棱錐的外接球問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.3.A【解析】

通過(guò)方差公式分析可知方差沒(méi)有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績(jī)相比,成績(jī)和平均數(shù)都增加了50,所以沒(méi)有改變,根據(jù)方差公式可知方差不變.故選:A【點(diǎn)睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4.C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.5.B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.6.C【解析】

根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.7.D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個(gè)選項(xiàng)即可得到結(jié)果.【詳解】的虛部為,錯(cuò)誤;,錯(cuò)誤;,錯(cuò)誤;,為純虛數(shù),正確本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、實(shí)部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識(shí),屬于基礎(chǔ)題.8.A【解析】

設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.9.D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng),即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長(zhǎng),且最大內(nèi)角為,由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,,d=-2前項(xiàng)和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問(wèn)題,同時(shí)還考查了余弦定理的應(yīng)用.10.C【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.11.A【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過(guò)點(diǎn)與的一條漸近線的平行的直線方程,通過(guò)解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對(duì)稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.12.D【解析】

作出四個(gè)函數(shù)的圖象及給出的四個(gè)點(diǎn),觀察這四個(gè)點(diǎn)在靠近哪個(gè)曲線.【詳解】如圖,作出A,B,C,D中四個(gè)函數(shù)圖象,同時(shí)描出題中的四個(gè)點(diǎn),它們?cè)谇€的兩側(cè),與其他三個(gè)曲線都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說(shuō)明擬合效果好.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.14.【解析】

由復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.15.【解析】

設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長(zhǎng)的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長(zhǎng)的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時(shí),.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.16.【解析】

利用等差數(shù)列前項(xiàng)和公式,列出方程組,求出首項(xiàng)和公差的值,利用等差數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式,可求出的表達(dá)式,然后利用雙勾函數(shù)的單調(diào)性可求出的最大值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,所以,數(shù)列的通項(xiàng)公式為;(2),,令,則且,,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在時(shí)單調(diào)遞減,在時(shí)單調(diào)遞增,當(dāng)或時(shí),取得最大值為.故答案為:;.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點(diǎn)睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡(jiǎn)求值,屬于簡(jiǎn)單題.18.(1)(答案不唯一)(2)證明見(jiàn)解析【解析】

(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時(shí)加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因?yàn)?所以.所以,即.因?yàn)?所以,因?yàn)?所以,所以.【點(diǎn)睛】考查不等式的證明,考查不等式的性質(zhì)的應(yīng)用.19.(1)16;(2)115.【解析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計(jì)算公式可得,當(dāng)時(shí)根據(jù)題意有,共個(gè);當(dāng)時(shí)求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對(duì)即可.【詳解】解:(1)三個(gè)數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計(jì)數(shù)原理得:為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項(xiàng)共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計(jì)算公式能得到:,時(shí),應(yīng)滿足,,共個(gè),時(shí),應(yīng)滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設(shè),則由于為正整數(shù)知必為正整數(shù),,,化簡(jiǎn)上式關(guān)系式可以知道:,均為偶數(shù),設(shè),則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗(yàn):符合題意,共有個(gè),綜上所述:共有個(gè)數(shù)對(duì)符合題意.【點(diǎn)睛】本題主要考查了排列組合的基本方法,同時(shí)也考查了組合數(shù)的運(yùn)算以及整數(shù)的分析方法等,需要根據(jù)題意20.(1)(2)證明見(jiàn)解析【解析】

(1)利用求得數(shù)列的通項(xiàng)公式.(2)先將縮小即,由此結(jié)合裂項(xiàng)求和法、放縮法,證得不等式成立.【詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.【點(diǎn)睛】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21.(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿足題意.(ii)若時(shí),,滿足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論