2023學(xué)年四川省成都市“五校聯(lián)考”高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第1頁
2023學(xué)年四川省成都市“五校聯(lián)考”高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第2頁
2023學(xué)年四川省成都市“五校聯(lián)考”高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第3頁
2023學(xué)年四川省成都市“五校聯(lián)考”高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第4頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.2.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1404.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.5.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.6.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.7.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.8.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.39.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.10.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個11.若復(fù)數(shù)滿足,則()A. B. C.2 D.12.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個面上分別標有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.14.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.15.已知向量,,,則__________.16.在△ABC中,a=3,,B=2A,則cosA=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.18.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.19.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.20.(12分)根據(jù)國家統(tǒng)計局數(shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數(shù)據(jù):45678的近似值551484031097298121.(12分)每年3月20日是國際幸福日,某電視臺隨機調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸?!钡母怕剩?Ⅱ)以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸?!钡娜藬?shù),求的分布列及.22.(10分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【題目詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【答案點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.2、A【答案解析】

利用兩條直線互相平行的條件進行判定【題目詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【答案點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.3、C【答案解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C4、C【答案解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【題目詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【答案點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.5、B【答案解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【題目詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【答案點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.6、A【答案解析】

根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【題目詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【答案點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.7、C【答案解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【題目詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【答案點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.8、C【答案解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【題目詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【答案點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.9、D【答案解析】

先求出四個頂點、四個焦點的坐標,四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【題目詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【答案點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.10、C【答案解析】

求出的元素,再確定其真子集個數(shù).【題目詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【答案點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.11、D【答案解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【題目詳解】解:由題意知,,,∴,故選:D.【答案點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.12、B【答案解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【題目詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【答案點睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】總事件數(shù)為,目標事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。14、【答案解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【題目詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【答案點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15、3【答案解析】

由題意得,,再代入中,計算即可得答案.【題目詳解】由題意可得,,∴,解得,∴.故答案為:.【答案點睛】本題考查向量模的計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意向量數(shù)量積公式的運用.16、【答案解析】

由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【題目詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【答案點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【答案解析】

試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.18、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【答案解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當(dāng)時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號).故在上為增函數(shù).①當(dāng)時,,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時,,故在上為減函數(shù),所以當(dāng)時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時,,故當(dāng)時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復(fù)雜,本題屬于難題.19、(1);(2).【答案解析】

(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數(shù)方程,利用點到直線的距離公式結(jié)合三角形的最值可得答案.【題目詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點為,,則.(2)曲線的參數(shù)方程為(為參數(shù)),故點的坐標為,從而點到直線的距離是,由此當(dāng)時,取得最小值,且最小值為.【答案點睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點到直線的距離公式等,屬于中檔題.20、(1),;(2)148萬億元.【答案解析】

(1)由散點圖知更適宜,對兩邊取自然對數(shù)得,令,,,則,再利用線性回歸方程的計算公式計算即可;(2)將代入所求的回歸方程中計算即可.【題目詳解】(1)根據(jù)數(shù)據(jù)及圖表可以判斷,更適宜作為全國GDP/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論