版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請(qǐng)問各畜賠多少?它的大意是放牧人放牧?xí)r粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應(yīng)該分別向青苗主人賠償多少升糧食?()A. B. C. D.2.一艘海輪從A處出發(fā),以每小時(shí)24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.6海里 B.6海里 C.8海里 D.8海里3.已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為()A. B.C. D.4.若函數(shù)的圖象經(jīng)過點(diǎn),則函數(shù)圖象的一條對(duì)稱軸的方程可以為()A. B. C. D.5.已知函數(shù),若對(duì)于任意的,函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.6.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.57.的展開式中的系數(shù)為()A.5 B.10 C.20 D.308.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.9.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.10.函數(shù)f(x)=的圖象大致為()A. B.C. D.11.已知為一條直線,為兩個(gè)不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則12.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]二、填空題:本題共4小題,每小題5分,共20分。13.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.14.已知雙曲線的左右焦點(diǎn)分別關(guān)于兩漸近線對(duì)稱點(diǎn)重合,則雙曲線的離心率為_____15.函數(shù)的定義域?yàn)開____________.16.甲、乙、丙、丁4名大學(xué)生參加兩個(gè)企業(yè)的實(shí)習(xí),每個(gè)企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1?x2的最大值.18.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.19.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.20.(12分)已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.21.(12分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)寫出該定點(diǎn),若不過定點(diǎn)請(qǐng)說明理由.22.(10分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,,結(jié)合等比數(shù)列的性質(zhì)可求出答案.【詳解】設(shè)羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,,.故選:D.【點(diǎn)睛】本題考查數(shù)列與數(shù)學(xué)文化,考查了等比數(shù)列的性質(zhì),考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.2、A【解析】
先根據(jù)給的條件求出三角形ABC的三個(gè)內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點(diǎn)睛】本題考查正弦定理的實(shí)際應(yīng)用,關(guān)鍵是將給的角度、線段長(zhǎng)度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.3、C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.4、B【解析】
由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱軸的求法,求得的對(duì)稱軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱軸的求法,屬于中檔題.5、D【解析】
將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個(gè)不同的根,先求導(dǎo),可判斷時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過導(dǎo)數(shù)可判斷當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個(gè)不同的根.,所以當(dāng)時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此.設(shè),,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個(gè)解.設(shè)其解為,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù).因?yàn)椋匠淘趦?nèi)有兩個(gè)不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個(gè)數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題6、D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長(zhǎng).【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長(zhǎng)度的計(jì)算公式,是基礎(chǔ)題.7、C【解析】
由知,展開式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_式的通項(xiàng)為,所以展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開式中的特定項(xiàng),解決這類問題要注意通項(xiàng)公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.8、A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.9、C【解析】
作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.10、D【解析】
根據(jù)函數(shù)為非偶函數(shù)可排除兩個(gè)選項(xiàng),再根據(jù)特殊值可區(qū)分剩余兩個(gè)選項(xiàng).【詳解】因?yàn)閒(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對(duì)稱,排除選項(xiàng)B,C.又f(2)==-<0.排除A,故選D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的對(duì)稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.11、D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.12、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
類比,三角形邊長(zhǎng)類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點(diǎn)睛】本題考查類比推理.類比正弦定理可得,類比時(shí)有結(jié)構(gòu)類比,方法類比等.14、【解析】
雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,一條漸近線的斜率為1,即,,,故答案為:.【點(diǎn)睛】本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.16、【解析】
求出所有可能,找出符合可能的情況,代入概率計(jì)算公式.【詳解】解:甲、乙、丙、丁4名大學(xué)生參加兩個(gè)企業(yè)的實(shí)習(xí),每個(gè)企業(yè)兩人,共有種,甲乙在同一個(gè)公司有兩種可能,故概率為,故答案為.【點(diǎn)睛】本題考查古典概型及其概率計(jì)算公式,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【解析】
(1)化簡(jiǎn)函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,則f′(x)=lnx﹣mx=0有兩個(gè)正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡(jiǎn)整理可得ln(x1x2)=ln?,設(shè)t,構(gòu)造函數(shù)g(t)=()lnt,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數(shù)h(x),∴h′(x),令h′(x)=0,解得x=e,∴當(dāng)x∈(0,e)時(shí),h′(x)>0,當(dāng)x∈(e,+∞)時(shí),h′(x)<0,∴函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,∴f′(x)=lnx﹣mx=0有兩個(gè)不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設(shè)t,∵1e,∴1<t≤e,設(shè)g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調(diào)遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調(diào)遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調(diào)遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題18、(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點(diǎn)O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由點(diǎn)F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個(gè)法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個(gè)法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點(diǎn),連接,,,平面平面平面..平面平面(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè).則設(shè)平面的一個(gè)法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個(gè)法向量,二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.19、y=2sin2x.【解析】
計(jì)算MN,計(jì)算得到函數(shù)表達(dá)式.【詳解】∵M(jìn),N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數(shù)解析式為y=2sin2x.【點(diǎn)睛】本題考查了矩陣變換,意在考查學(xué)生的計(jì)算能力.20、(1)(2)【解析】
(1)用等比數(shù)列的首項(xiàng)和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯(cuò)位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和等差中項(xiàng)的概念以及錯(cuò)位相減法求和,考查運(yùn)算能力,屬中檔題.21、(1);(2)見解析【解析】
(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房買賣協(xié)議2024年
- 車輛抵押擔(dān)保協(xié)議精簡(jiǎn)2024
- 2024短期資金周轉(zhuǎn)過橋貸款協(xié)議范本
- 防水工程清工承攬專用協(xié)議范本2024
- 返聘員工協(xié)議模板(2024年)
- 工傷保險(xiǎn)公司合同范本
- 2024建筑材料購銷協(xié)議樣本
- 南昌員工入職合同范本
- 湛江購房合同范本
- 齊齊哈爾大學(xué)《計(jì)算機(jī)組成及操作系統(tǒng)》2022-2023學(xué)年期末試卷
- 產(chǎn)品設(shè)計(jì)-淺談智能藍(lán)牙音響的外觀創(chuàng)新設(shè)計(jì)
- 2024屆重慶市永川區(qū)物理高一第一學(xué)期期中質(zhì)量檢測(cè)試題含解析
- 傳統(tǒng)節(jié)日文化在幼兒園課程中的應(yīng)用研究 論文
- 瀝青改色路面修補(bǔ)施工方案
- 香菇種植示范基地項(xiàng)目可行性策劃實(shí)施方案
- 混凝土硫酸鹽侵蝕基本機(jī)理研究
- 《機(jī)械設(shè)計(jì)基礎(chǔ)A》機(jī)械電子 教學(xué)大綱
- 水工巖石分級(jí)及圍巖分類
- 斜井敷設(shè)電纜措施
- 施工機(jī)械設(shè)備租賃實(shí)施方案
- 牙膏產(chǎn)品知識(shí)課件
評(píng)論
0/150
提交評(píng)論