2023屆黑龍江省佳木斯市第五中學九年級數(shù)學上冊期末聯(lián)考模擬試題含解析_第1頁
2023屆黑龍江省佳木斯市第五中學九年級數(shù)學上冊期末聯(lián)考模擬試題含解析_第2頁
2023屆黑龍江省佳木斯市第五中學九年級數(shù)學上冊期末聯(lián)考模擬試題含解析_第3頁
2023屆黑龍江省佳木斯市第五中學九年級數(shù)學上冊期末聯(lián)考模擬試題含解析_第4頁
2023屆黑龍江省佳木斯市第五中學九年級數(shù)學上冊期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.給出四個實數(shù),2,0,-1,其中負數(shù)是(

)A. B.2 C.0 D.-12.圓錐形紙帽的底面直徑是18cm,母線長為27cm,則它的側面展開圖的圓心角為()A.60° B.90° C.120° D.150°3.已知⊙O的半徑為5,若PO=4,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O上 C.點P在⊙O外 D.無法判斷4.學?!靶@之聲”廣播站要選拔一名英語主持人,小瑩參加選拔的各項成績如下:姓名讀聽寫小瑩928090若把讀、聽、寫的成績按5:3:2的比例計入個人的總分,則小瑩的個人總分為()A.86 B.87 C.88 D.895.反比例函數(shù)經(jīng)過點(1,),則的值為()A.3 B. C. D.6.下列光線所形成的投影不是中心投影的是()A.太陽光線 B.臺燈的光線 C.手電筒的光線 D.路燈的光線7.若分式的值為,則的值為()A. B. C. D.8.如圖是一根空心方管,它的俯視圖是()A. B. C. D.9.在△ABC中,∠A、∠B都是銳角,且,則關于△ABC的形狀的說法錯誤的是()A.它不是直角三角形 B.它是鈍角三角形C.它是銳角三角形 D.它是等腰三角形10.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2二、填空題(每小題3分,共24分)11.如圖,點p是∠的邊OA上的一點,點p的坐標為(12,5),則tanα=_____.12.將邊長分別為,,的三個正方形按如圖所示的方式排列,則圖中陰影部分的面積為______.13.函數(shù)中自變量x的取值范圍是________.14.設x1,x2是方程x2+3x﹣1=0的兩個根,則x1+x2=_____.15.如圖,是某公園一圓形噴水池,在池中心豎直安裝一根水管OA=1.25m,A處是噴頭,水流在各個方向沿形狀相同的拋物線落下,水落地后形成一個圓,圓心為O,直徑為線段CB.建立如圖所示的平面直角坐標系,若水流路線達到最高處時,到x軸的距離為2.25m,到y(tǒng)軸的距離為1m,則水落地后形成的圓的直徑CB=_____m.16.已知點、在二次函數(shù)的圖像上,則___.(填“”、“”、“”)17.如圖,⊙O的內接四邊形ABCD中,∠A=110°,則∠BOD等于________°.18.關于x的一元二次方程kx2﹣x+2=0有兩個不相等的實數(shù)根,那么k的取值范圍是_____.三、解答題(共66分)19.(10分)某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結果如下:甲1061068乙79789經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.(1)求乙進球的平均數(shù)和方差;(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?20.(6分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.21.(6分)如圖,在△ABC中,∠B=45°,AC=5,cosC=,AD是BC邊上的高線.(1)求AD的長;(2)求△ABC的面積.22.(8分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結EF、EO,若DE=,∠DPA=45°.(1)求⊙O的半徑;(2)求圖中陰影部分的面積.23.(8分)某鋼鐵廠計劃今年第一季度一月份的總產(chǎn)量為500t,三月份的總產(chǎn)量為720t,若平均每月的增長率相同.(1)第一季度平均每月的增長率;(2)如果第二季度平均每月的增長率保持與第一季度平均每月的增長率相同,請你估計該廠今年5月份總產(chǎn)量能否突破1000t?24.(8分)某校為了提升初中學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新精神,舉辦“玩轉數(shù)學”比賽,現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄,甲、乙、丙三個小組各項得分如下表:小組

研究報告

小組展示

答辯

91

80

78

81

74

85

79

83

90

(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序:(2)如果按照研究報告占40%,小組展示占30%,答辯占30%,計算各小組的成績,哪個小組的成績最高?25.(10分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.26.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點.根據(jù)以往所學的函數(shù)知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)負數(shù)的定義,負數(shù)小于0即可得出答案.【詳解】根據(jù)題意:負數(shù)是-1,故答案為:D.【點睛】此題主要考查了實數(shù),正確把握負數(shù)的定義是解題關鍵.2、C【分析】根據(jù)圓錐側面展開圖的面積公式以及展開圖是扇形,扇形半徑等于圓錐母線長度,再利用扇形面積求出圓心角.【詳解】解:根據(jù)圓錐側面展開圖的面公式為:πrl=π×9×27=243π,

∵展開圖是扇形,扇形半徑等于圓錐母線長度,∴扇形面積為:解得:n=1.

故選:C.【點睛】此題主要考查了圓錐側面積公式的應用以及與展開圖各部分對應情況,得出圓錐側面展開圖等于扇形面積是解決問題的關鍵.3、A【分析】已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內,②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外,根據(jù)以上內容判斷即可.【詳解】∵⊙O的半徑為5,若PO=4,∴4<5,∴點P與⊙O的位置關系是點P在⊙O內,故選:A.【點睛】本題考查了點與圓的位置關系的應用,注意:已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內,②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外.4、C【分析】利用加權平均數(shù)按照比例進一步計算出個人總分即可.【詳解】根據(jù)題意得:(分),∴小瑩的個人總分為88分;故選:C.【點睛】本題主要考查了加權平均數(shù)的求取,熟練掌握相關公式是解題關鍵.5、B【解析】此題只需將點的坐標代入反比例函數(shù)解析式即可確定k的值.【詳解】把已知點的坐標代入解析式可得,k=1×(-1)=-1.故選:B.【點睛】本題主要考查了用待定系數(shù)法求反比例函數(shù)的解析式,.6、A【分析】利用中心投影(光由一點向外散射形成的投影叫做中心投影)和平行投影(由平行光線形成的投影是平行投影)的定義即可判斷出.【詳解】解:A.太陽距離地球很遠,我們認為是平行光線,因此不是中心投影.

B.臺燈的光線是由臺燈光源發(fā)出的光線,是中心投影;

C.手電筒的光線是由手電筒光源發(fā)出的光線,是中心投影;

D.路燈的光線是由路燈光源發(fā)出的光線,是中心投影.

所以,只有A不是中心投影.

故選:A.【點睛】本題考查了中心投影和平行投影的定義.熟記定義,并理解一般情況下,太陽光線可以近似的看成平行光線是解決此題的關鍵.7、A【分析】分式值為零的條件是分子等于零且分母不等于零,據(jù)此求解即可.【詳解】解:∵分式的值為1,

∴x-2=1且x+4≠1.

解得:x=2.

故選:A.【點睛】本題主要考查的是分式值為零的條件,熟練掌握分式值為零的條件是解題的關鍵.8、B【分析】俯視圖是從物體的上面看,所得到的圖形:注意看到的用實線表示,看不到的用虛線表示.【詳解】如圖所示:俯視圖應該是故選:B.【點睛】本題考查了作圖?三視圖,解題的關鍵是掌握看到的用實線表示,看不到的用虛線表示.9、C【解析】先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°?∠A?∠B=180?30°?30°=120°.故選C.【點睛】本題主要考查特殊角三角函數(shù)值,熟悉掌握是關鍵.10、B【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意過P作PE⊥x軸于E,根據(jù)P(12,5)得出PE=5,OE=12,根據(jù)銳角三角函數(shù)定義得出,代入進行計算求出即可.【詳解】解:過P作PE⊥x軸于E,∵P(12,5),∴PE=5,OE=12,∴.故答案為:.【點睛】本題考查銳角三角函數(shù)的定義的應用,注意掌握在Rt△ACB中,∠C=90°,則.12、【分析】首先對圖中各點進行標注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質求出BK、EN的長從而求出梯形的面積即可得出答案.【詳解】解:如圖所示,∵四邊形MEGH為正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面積:∴陰影部分的面積:故答案為:.【點睛】本題主要考查的知識點是圖形面積的計算以及相似三角形判定及其性質,根據(jù)相似的性質求出相應的邊長是解答本題的關鍵.13、x≥-1且x≠1.【分析】根據(jù)二次根式的被開方數(shù)非負和分式的分母不為0可得關于x的不等式組,解不等式組即可求得答案.【詳解】解:根據(jù)題意,得,解得x≥-1且x≠1.故答案為x≥-1且x≠1.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,難度不大,屬于基礎題型.14、﹣1.【分析】直接根據(jù)一元二次方程根與系數(shù)的關系求解即可.【詳解】解:∵x1,x2是方程x2+1x﹣1=0的兩個根,∴x1+x2=﹣1.故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.15、1【分析】設y軸右側的拋物線解析式為:y=a(x?1)2+2.21,將A(0,1.21)代入,求得a,從而可得拋物線的解析式,再令函數(shù)值為0,解方程可得點B坐標,從而可得CB的長.【詳解】解:設y軸右側的拋物線解析式為:y=a(x﹣1)2+2.21∵點A(0,1.21)在拋物線上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴拋物線的解析式為:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴點B坐標為(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案為:1.【點睛】本題考查了二次函數(shù)在實際問題中的應用,明確二次函數(shù)的相關性質及正確的解方程,是解題的關鍵.16、【分析】把兩點的坐標分別代入二次函數(shù)解析式求出縱坐標,再比較大小即可得解.【詳解】時,,

時,,

∵>0,

∴;

故答案為:.【點睛】本題考查了二次函數(shù)的性質及二次函數(shù)圖象上點的坐標特征,用求差法比較大小是常用的方法.17、140【解析】試題解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.18、且k≠1【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴解得:﹣≤k<且k≠1故答案為﹣≤k<且k≠1.點睛:本題考查了根的判別式、一元二次方程的定義以及二次根式有意義的條件,根據(jù)一元二次方程的定義、二次根式下非負以及根的判別式列出關于k的一元一次不等式組是解題的關鍵.三、解答題(共66分)19、(1)乙平均數(shù)為8,方差為0.8;(2)乙.【分析】(1)根據(jù)平均數(shù)、方差的計算公式計算即可;(2)根據(jù)平均數(shù)相同時,方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.【詳解】(1)乙進球的平均數(shù)為:(7+9+7+8+9)÷5=8,乙進球的方差為:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均數(shù)相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波動較小,成績更穩(wěn)定,∴應選乙去參加定點投籃比賽.【點睛】本題考查了方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了平均數(shù).20、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GBS∽△GCB,說明點S是△GBC的自相似點;又證得△DBG△DSB,說明點S是△GBD的自相似點.從而說明S(3,-2)是△GBD與△GBC公共的自相似點.【詳解】(1)如圖,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故點P是△ABC的自相似點;(2)點P只能在BC上,①△CPA∽△CAB,如圖,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,過點P作PD∥y軸交軸于D,∴,,∴,,∴,,P點的坐標為(,)②△BPA∽△BAC,如圖,由前面獲得的數(shù)據(jù):AB,,∵△BPA∽△BAC,∴,∴,∴,過點P作PE∥y軸交軸于E,∴,∴,∴,,∴,P點的坐標為(,);(3)存在.當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).理由如下:如圖:設直線AC的解析式為:,

∴,解得:,∴直線AC的解析式為:,過點D作DE⊥x軸于點E,

∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,設BE=a,則DE=3a,∴OE=3-a,∴點D的坐標為(3-a,-3a),∵點D在直線AC上,∴,解得:,∴點D的坐標為(,);如下圖:當點G的坐標為(5,)時,△GBD與△GBC公共的自相似點為S(3,).直線AC的解析式為:,

∵,,∴點G、點S在直線AC上,過點G作GH⊥x軸于點H,∵,∴,由S(3,)、B(3,0)知BS⊥x軸,∴△AED、△ABS、△AHG為等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴點S是△GBC的自相似點;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴點S是△GBD的自相似點.∴S(3,)是△GBD與△GBC公共的自相似點.【點睛】本題主要考查了相似三角形的判定,涉及的知識有:平面內點的特征、待定系數(shù)法求直線的解析式、等腰直角三角形的判定和性質、勾股定理,讀懂題意,理清“自相似點”的概念是解題的關鍵.21、(1)AD=2;(2)S△ABC=1.【分析】(1)由高的定義可得出∠ADC=∠ADB=90°,在Rt△ACD中,由AC的長及cosC的值可求出CD的長,再利用勾股定理即可求出AD的長;(2)由∠B,∠ADB的度數(shù)可求出∠BAD的度數(shù),即可得出∠B=∠BAD,利用等角對等邊可得出BD的長,再利用三角形的面積公式即可求出△ABC的面積.【詳解】解:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ACD中,AC=5,cosC=,∴CD=AC?cosC=3,∴AD==2.(2)∵∠B=25°,∠ADB=90°,∴∠BAD=90°﹣∠B=25°,∴∠B=∠BAD,∴BD=AD=2,∴S△ABC=AD?BC=×2×(2+3)=1.【點睛】本題考查了解直角三角形、勾股定理、等腰三角形的性質以及三角形的面積,解題的關鍵是:(1)

通過解直角三角形及勾股定理,求出CD、AD的長;(2)

利用等腰三角形的性質,找出BD的長.22、(1)2;(2)π-2.【分析】(1)因為AB⊥DE,求得CE的長,因為DE平分AO,求得CO的長,根據(jù)勾股定理求得⊙O的半徑(2)連結OF,根據(jù)S陰影=S扇形–S△EOF求得【詳解】解:(1)∵直徑AB⊥DE∴∵DE平分AO∴又∵∴在Rt△COE中,∴⊙O的半徑為2(2)連結OF在Rt△DCP中,∵∴∴∵∴S陰影=【點睛】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了扇形的面積公式、圓周角定理和含30度的直角三角形三邊的關系.23、(1)20%(2)能【解析】(1)設第一季度平均每月的增長率為x,根據(jù)該廠一月份及三月份的總產(chǎn)量,即可得出關于x的一元二次方程,解之取其正值即可得出結論;(2)根據(jù)五月份的總產(chǎn)量=三月份的總產(chǎn)量×(1+增長率)2,即可求出今年五月份的總產(chǎn)量,再與1000進行比較即可得出結論.【詳解】(1)設第一季度平均每月的增長率為x,根據(jù)題意得:500(1+x)2=720解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增長率為20%.(2)720×(1+20%)2=1036.8(t).∵1036.8>1000,∴該廠今年5月份總產(chǎn)量能突破1000t.【點睛】本題考查了一元二次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據(jù)數(shù)量關系,求出今年五月份的總產(chǎn)量.24、(1)丙、甲、乙;(2)甲組的成績最高.【解析】試題分析:(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序即可;(2)分別計算各小組的加權平均成績,然后比較即可.試題解析:(1)甲:(91+80+78)÷3=83;乙:(81+74+85)÷3=80;丙:(79+83+90)÷3=84.∴小組的排名順序為:丙、甲、乙.(2)甲:91×40%+80×30%+78×30%=83.8乙:81×40%+74×30%+85×30%=80.1丙:79×40%+83×30%+90×30%=83.5∴甲組的成績最高考點:平均數(shù);加權平均數(shù).25、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數(shù)的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論