版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.對于二次函數(shù)的圖象,下列結論錯誤的是()A.頂點為原點 B.開口向上 C.除頂點外圖象都在軸上方 D.當時,有最大值2.下列各點中,在反比例函數(shù)圖像上的是()A. B. C. D.3.如圖,拋物線y=﹣x2+2x+2交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.下列說法:其中正確判斷的序號是()①拋物線與直線y=3有且只有一個交點;②若點M(﹣2,y1),N(1,y2),P(2,y3)在該函數(shù)圖象上,則y1<y2<y3;③將該拋物線先向左,再向下均平移2個單位,所得拋物線解析式為y=(x+1)2+1;④在x軸上找一點D,使AD+BD的和最小,則最小值為.A.①②④ B.①②③ C.①③④ D.②③④4.已知袋中有若干個球,其中只有2個紅球,它們除顏色外其它都相同.若隨機從中摸出一個,摸到紅球的概率是,則袋中球的總個數(shù)是()A.2 B.4 C.6 D.85.已知和的半徑長分別是方程的兩根,且,則和的位置關系為()A.相交 B.內(nèi)切 C.內(nèi)含 D.外切6.一元二次方程的一次項系數(shù)和常數(shù)項依次是()A.和 B.和 C.和 D.和7.如圖,在平行四邊形ABCD中,E為CD上一點,連接AE,BD,且AE,BD交于點F,::25,則DE:=()A.2:5 B.3:2 C.2:3 D.5:38.已知sinα=,求α.若以科學計算器計算且結果以“度,分,秒”為單位,最后應該按鍵()A.AC B.2ndF C.MODE D.DMS9.如圖,是的外接圓,已知,則的大小為()A. B. C. D.10.拋物線y=(x+2)2﹣3可以由拋物線y=x2平移得到,則下列平移過程正確的是()A.先向左平移2個單位,再向上平移3個單位 B.先向左平移2個單位,再向下平移3個單位C.先向右平移2個單位,再向下平移3個單位 D.先向右平移2個單位,再向上平移3個單位11.如圖,下面圖形及各個選項均是由邊長為1的小方格組成的網(wǎng)格,三角形的頂點均在小方格的頂點上,下列四個選項中哪一個陰影部分的三角形與已知相似.()A. B. C. D.12.按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是()A.點O為位似中心且位似比為1:2B.△ABC與△DEF是位似圖形C.△ABC與△DEF是相似圖形D.△ABC與△DEF的面積之比為4:1二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.14.如圖,在平面直角坐標系中,拋物線與軸交于點,過點作軸的平行線交拋物線于點.為拋物線的頂點.若直線交直線于點,且為線段的中點,則的值為_____.15.如圖,沿一條母線將圓錐側面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑,扇形的圓心角,則該圓錐的母線長為___.16.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為▲.17.方程x2=x的解是_____.18.____.三、解答題(共78分)19.(8分)如圖,在中,,,以為頂點在邊上方作菱形,使點分別在邊上,另兩邊分別交于點,且點恰好平分.(1)求證:;(2)請說明:.20.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).(1)求一次函數(shù)表達式和反比例函數(shù)表達式;(2)求出點C坐標,并根據(jù)圖象直接寫出不等式kx+b≤的解集.21.(8分)如圖,在矩形中,分別從同時出發(fā),分別沿邊移動,當有一個點先到達所在邊的另一個端點時,其它各點也隨之停止移動.己知移動段時間后,若,.當為何值時,以為頂點的四邊形是平行四邊形?22.(10分)已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.23.(10分)如圖,BD是平行四邊形ABCD的對角線,DE⊥AB于點E,過點E的直線交BC于點G,且BG=CG.(1)求證:GD=EG.(2)若BD⊥EG垂足為O,BO=2,DO=4,畫出圖形并求出四邊形ABCD的面積.(3)在(2)的條件下,以O為旋轉中心順時針旋轉△GDO,得到△G′D'O,點G′落在BC上時,請直接寫出G′E的長.24.(10分)已知反比例函數(shù)的圖象經(jīng)過點A(2,6).(1)求這個反比例函數(shù)的解析式;(2)這個函數(shù)的圖象位于哪些象限?y隨x的增大如何變化?(3)點B(3,4),C(5,2),D(,)是否在這個函數(shù)圖象上?為什么?25.(12分)如圖,已知△ABC中,∠ACB=90°,AC=4,BC=3,點M、N分別是邊AC、AB上的動點,連接MN,將△AMN沿MN所在直線翻折,翻折后點A的對應點為A′.(1)如圖1,若點A′恰好落在邊AB上,且AN=AC,求AM的長;(2)如圖2,若點A′恰好落在邊BC上,且A′N∥AC.①試判斷四邊形AMA′N的形狀并說明理由;②求AM、MN的長;(3)如圖3,設線段NM、BC的延長線交于點P,當且時,求CP的長.26.為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(1)C類女生有名,D類男生有名,將上面條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中“課前預習不達標”對應的圓心角度數(shù)是;(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行“一幫一”互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)二次函數(shù)的性質(zhì)逐項判斷即可.【詳解】根據(jù)二次函數(shù)的性質(zhì),可得:二次函數(shù)頂點坐標為(0,0),開口向上,故除頂點外圖象都在x軸上方,故A、B、C正確;當x=0時,y有最小值為0,故D錯誤.故選:D.【點睛】本題考查二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)頂點坐標,開口方向,最值與系數(shù)之間的關系是解題的關鍵.2、C【分析】把每個點的坐標代入函數(shù)解析式,從而可得答案.【詳解】解:當時,故A錯誤;當時,故B錯誤;當時,故C正確;當時,故D錯誤;故選C.【點睛】本題考查的是反比例函數(shù)圖像上點的坐標特點,掌握以上知識是解題的關鍵.3、C【分析】根據(jù)拋物線的性質(zhì)和平移,以及一動點到兩定點距離之和最小問題的處理方法,對選項進行逐一分析即可.【詳解】①拋物線的頂點,則拋物線與直線y=3有且只有一個交點,正確,符合題意;②拋物線x軸的一個交點在2和3之間,則拋物線與x軸的另外一個交點坐標在x=0或x=﹣1之間,則點N是拋物線的頂點為最大,點P在x軸上方,點M在x軸的下放,故y1<y3<y2,故錯誤,不符合題意;③y=﹣x2+2x+2=﹣(x+1)2+3,將該拋物線先向左,再向下均平移2個單位,所得拋物線解析式為y=(x+1)2+1,正確,符合題意;④點A關于x軸的對稱點,連接A′B交x軸于點D,則點D為所求,距離最小值為BD′==,正確,符合題意;故選:C.【點睛】本題考查拋物線的性質(zhì)、平移和距離的最值問題,其中一動點到兩定點距離之和最小問題比較巧妙,屬綜合中檔題.4、D【解析】試題解析:袋中球的總個數(shù)是:2÷=8(個).故選D.5、A【解析】解答此題,先要求一元二次方程的兩根,然后根據(jù)圓與圓的位置關系判斷條件,確定位置關系.圓心距<兩個半徑和,說明兩圓相交.【詳解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1與⊙O2相交.
故選A.【點睛】此題綜合考查一元二次方程的解法及兩圓的位置關系的判斷,關鍵解出兩圓半徑.6、B【解析】根據(jù)一元二次方程的一般形式進行選擇.【詳解】解:2x2-x=1,
移項得:2x2-x-1=0,
一次項系數(shù)是-1,常數(shù)項是-1.
故選:B.【點睛】此題主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b分別叫二次項系數(shù),一次項系數(shù).7、B【分析】根據(jù)平行四邊形的性質(zhì)得到DC//AB,DC=AB,得到△DFE∽△BFA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】四邊形ABCD是平行四邊形,
,,
∽,
:,
,
::2,
故選B.【點睛】本題考查的是相似三角形的性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關鍵.8、D【分析】根據(jù)利用科學計算器由三角函數(shù)值求角度的使用方法,容易進行選擇.【詳解】若以科學計算器計算且結果以“度,分,秒”為單位,最后應該按DMS,故選:D.【點睛】本題考查科學計算器的使用方法,屬基礎題.9、B【分析】根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半可得∠AOB=100°,再根據(jù)三角形內(nèi)角和定理可得答案.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO,∴∠ABO=(180°-100°)÷2=40°,故選:B.【點睛】此題主要考查了三角形的外接圓與外心,圓周角定理,關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、B【解析】根據(jù)“左加右減,上加下減”的原則進行解答即可:∵y=x2,∴平移過程為:先向左平移2個單位,再向下平移3個單位.故選B.11、A【分析】本題主要應用兩三角形相似判定定理,三邊對應成比例,分別對各選項進行分析即可得出答案.【詳解】解:已知給出的三角形的各邊分別為1、、,只有選項A的各邊為、2、與它的各邊對應成比例.故選:A.【點睛】本題考查三角形相似判定定理以及勾股定理,是基礎知識要熟練掌握.12、A【分析】根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】∵如圖,任取一點O,連結AO,BO,CO,并取它們的中點D、E、F,得△DEF,∴將△ABC的三邊縮小到原來的,此時點O為位似中心且△ABC與△DEF的位似比為2:1,故選項A說法錯誤,符合題意;△ABC與△DEF是位似圖形,故選項B說法正確,不合題意;△ABC與△DEF是相似圖形,故選項C說法正確,不合題意;△ABC與△DEF的面積之比為4:1,故選項D說法正確,不合題意;故選:A.【點睛】此題主要考查了位似圖形的性質(zhì),正確的記憶位似圖形性質(zhì)是解決問題的關鍵.二、填空題(每題4分,共24分)13、1【分析】首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點睛】圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.14、2【解析】先根據(jù)拋物線解析式求出點坐標和其對稱軸,再根據(jù)對稱性求出點坐標,利用點為線段中點,得出點坐標;用含的式子表示出點坐標,寫出直線的解析式,再將點坐標代入即可求解出的值.【詳解】解:∵拋物線與軸交于點,∴,拋物線的對稱軸為∴頂點坐標為,點坐標為∵點為線段的中點,∴點坐標為設直線解析式為(為常數(shù),且)將點代入得∴將點代入得解得故答案為:2【點睛】考核知識點:拋物線與坐標軸交點問題.數(shù)形結合分析問題是關鍵.15、6.【分析】易得圓錐的底面周長,也就是側面展開圖的弧長,進而利用弧長公式即可求得圓錐的母線長.【詳解】圓錐的底面周長cm,設圓錐的母線長為,則:,解得,故答案為.【點睛】本題考查了圓錐的計算,用到的知識點為:圓錐的側面展開圖的弧長等于底面周長;弧長公式為:.16、.【解析】待定系數(shù)法,曲線上點的坐標與方程的關系,反比例函數(shù)圖象的對稱性,正方形的性質(zhì).【分析】由反比例函數(shù)的對稱性可知陰影部分的面積和正好為小正方形面積的,設小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據(jù)點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數(shù)的解析式:∵反比例函數(shù)的圖象關于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(shù)(k>0)的圖象上,∴k=2×3=2.∴此反比例函數(shù)的解析式為:.17、x1=0,x2=1【分析】利用因式分解法解該一元二次方程即可.【詳解】解:x2=x,移項得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案為:x1=0,x2=1【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題的關鍵.18、【分析】根據(jù)特殊角度的三角函數(shù)值,,,代入數(shù)據(jù)計算即可.【詳解】∵,,,∴原式=.【點睛】熟記特殊角度的三角函數(shù)值是解本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)四邊形是菱形,得到,又推出,又點恰好平分,三線合一,(2)可證,再證,從而求得【詳解】證明:(1)連接,∵,,∴.∵四邊形是菱形,∴,,∴是等邊三角形.∵是的中點,∴(2)∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.∴.【點睛】本題考查了菱形的性質(zhì)、三線合一以及相似三角形的性質(zhì).20、(1)y=﹣2x+1;(2)﹣2≤x<0或x≥1.【分析】(1)由矩形的面積求得m=﹣16,得到反比例函數(shù)的解析式,把D(1,﹣b)代入求得的解析式得到D(1,﹣1),求得b=1,把D(1,﹣1)代入y=kx+1,即可求得一次函數(shù)的解析式;(2)由一次函數(shù)的解析式求得B的坐標為(0,1),根據(jù)題意OF=8,C點的縱坐標為8,代入反比例函數(shù)的解析式求得橫坐標,得到C的坐標,根據(jù)C、D的坐標結合圖象即可求得不等式kx+b≤的解集.【詳解】解:(1)∵CE⊥x軸,CF⊥y軸,∵四邊形OECF的面積為16,∴|m|=16,∵雙曲線位于二、四象限,∴m=﹣16,∴反比例函數(shù)表達式為y=,將x=1代入y=得:y=﹣1,∴D(1,﹣1),∴b=1將D(1,﹣1)代入y=kx+1,得k=﹣2∴一次函數(shù)的表達式為y=﹣2x+1;(2)∵y=﹣2x+1,∴B(0,1),∴OF=8,將y=8代入y=﹣2x+1得x=﹣2,∴C(﹣2,8),∴不等式kx+b≤的解集為﹣2≤x<0或x≥1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,用到的知識點是待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,這里體現(xiàn)了數(shù)形結合的思想,關鍵是根據(jù)反比例函數(shù)與一次函數(shù)的交點求出不等式的解集.21、2或【分析】根據(jù)平行四邊形的性質(zhì),得,分兩種情況:①當點在點的左側時,②當點在點的右側時,分別列出關于x的方程,即可求解.【詳解】∵在矩形中,AD∥BC,∴以為頂點的四邊形是平行四邊形時,.①當點在點的左側時,由,得:,解得:(舍去),;②當點在點的右側時,由,得:,解得:(舍去);綜上所述:當=2或時,以為頂點的四邊形是平行四邊形.【點睛】本題主要考查一元二次方程與平行四邊形的性質(zhì)綜合,根據(jù)等量關系,列出方程,時是解題的關鍵.22、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,點N的坐標為(﹣1,﹣2)或(﹣1,0),理由見解析【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法即可得出結論;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出結論;(3)分兩種情況:①以BD為一邊,判斷出△EDB≌△GNM,即可得出結論.②以BD為對角線,利用中點坐標公式即可得出結論.【詳解】(1)當x=0時,y=3,∴B(0,3),當y=0時,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),∴m1=﹣3(舍),m2=﹣2;(3)存在,分兩種情況:①以BD為一邊,如圖1,設對稱軸與x軸交于點G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E與B關于對稱軸對稱,∴BE∥x軸,∵四邊形DNMB是平行四邊形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②當BD為對角線時,如圖2,此時四邊形BMDN是平行四邊形,設M(n,﹣n2﹣2n+3),N(﹣1,h),∵B(0,3),D(-2,1),∴∴n=-1,h=0∴N(﹣1,0);綜上所述,點N的坐標為(﹣1,﹣2)或(﹣1,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,根據(jù)線段之間的數(shù)量關系求點坐標,根據(jù)點的位置構建平行四邊形,(3)中以BD為對角線時,利用中點坐標公式計算更簡單.23、(1)詳見解析;(2)圖詳見解析,12;(3).【分析】(1)如圖1,延長EG交DC的延長線于點H,由“AAS”可證△CGH≌△BGE,可得GE=GH,由直角三角形的性質(zhì)可得DG=EG=GH;
(2)通過證明△DEO∽△DBO,可得,可求DE=,由平行線分線段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即點A與點E重合,可畫出圖形,由面積公式可求解;
(3)如圖3,過點O作OF⊥BC,由旋轉的性質(zhì)和等腰三角形的性質(zhì)可得GF=G'F,由平行線分線段成比例可求GF的長,由勾股定理可求解.【詳解】證明:(1)如圖1,延長EG交DC的延長線于點H,∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,又∵BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS),∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,∴DG=EG=GH;(2)如圖1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴,∴DE×DE=4×(2+4)=24,∴DE=∴EO=,∵AB∥CD,∴,∴HO=2EO=,∴EH=,且EG=GH,∴EG=,GO=EG﹣EO=,∴GB=,∴BC==AD,∴AD=DE,∴點E與點A重合,如圖2:∵S四邊形ABCD=2S△ABD,∴S四邊形ABCD=2××BD×AO=6×2=12;(3)如圖3,過點O作OF⊥BC,∵旋轉△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'=.【點睛】本題是四邊形綜合題,考查了平行四邊形的性質(zhì),矩形的性質(zhì),旋轉的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,添加恰當輔助線是本題的關鍵.24、(1);(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內(nèi),y隨x的增大而減?。?3)點B,D在函數(shù)的圖象上,點C不在這個函數(shù)圖象上.【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據(jù)反比例函數(shù)的性質(zhì)求解;(3)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【詳解】(1)設這個反比例函數(shù)的解析式為,因為在其圖象上,所以點的坐標滿足,即,,解得,所以,這個反比例函數(shù)解析式為;(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內(nèi),隨的增大而減?。?3)因為點,滿足,所以點,在函數(shù)的圖象上,點的坐標不滿足,所以點不在這個函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式:先設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);再把已知條件(自變量與函數(shù)的對應值)帶入解析式,得到待定系數(shù)的方程;然后解方程,求出待定系數(shù);最后寫出解析式.也考查了反比例函數(shù)的性質(zhì).25、(1);(2)①菱形,理由見解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性質(zhì)求解即可.(2)①根據(jù)鄰邊相等的平行四邊形是菱形證明即可.②連接AA′交MN于O.設AM=MA′=x,由MA′∥AB,可得=,由此構建方程求出x,解直角三角形求出OM即可解決問題.(3)如圖3中,作NH⊥BC于H.想辦法求出NH,CM,利用相似三角形,確定比例關系,構建方程解決問題即可.【詳解】解:(1)如圖1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物業(yè)使用權合同轉讓及物業(yè)管理責任追究辦法協(xié)議3篇
- 2025年度草莓種植基地病蟲害防治服務合同3篇
- 年度乙二醇二乙醚戰(zhàn)略市場規(guī)劃報告
- 年度高壓水流清洗機產(chǎn)業(yè)分析報告
- 年度中高端衡器競爭策略分析報告
- 2024-2025學年高中歷史第五單元近代中國的思想解放潮流第14課從“師夷長技”到維新變法課后作業(yè)含解析新人教版必修3
- 二零二五年快遞公司快遞配送員招聘合同參考范本3篇
- 2025年苗圃技術員工作合同規(guī)范文本
- 2025年熱泵熱水工程采購合同模板2篇
- 二零二五年度酒店客房租賃與客房設施維護合同12篇
- 風力發(fā)電場運行維護手冊
- 《3-6歲兒童學習與發(fā)展指南》專題培訓
- 河道旅游開發(fā)合同
- 導尿及留置導尿技術
- 情人合同范例
- 建筑公司勞務合作協(xié)議書范本
- 安徽省合肥市2023-2024學年高一上學期物理期末試卷(含答案)
- 《基于杜邦分析法的公司盈利能力研究的國內(nèi)外文獻綜述》2700字
- 儒家思想講解課程設計
- 2024年個人汽車抵押借款合同范本(四篇)
- 軌道交通設備更新項目可行性研究報告-超長期國債
評論
0/150
提交評論