2021-2022學年益陽市重點中學高三第三次測評數(shù)學試卷含解析_第1頁
2021-2022學年益陽市重點中學高三第三次測評數(shù)學試卷含解析_第2頁
2021-2022學年益陽市重點中學高三第三次測評數(shù)學試卷含解析_第3頁
2021-2022學年益陽市重點中學高三第三次測評數(shù)學試卷含解析_第4頁
2021-2022學年益陽市重點中學高三第三次測評數(shù)學試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.2.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.3.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.4.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.5.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題6.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb7.函數(shù)的大致圖象為()A. B.C. D.8.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)9.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.1010.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.1511.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.12.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________14.一個四面體的頂點在空間直角坐標系中的坐標分別是,,,,則該四面體的外接球的體積為__________.15.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質(zhì)與健康現(xiàn)狀,合理制定學校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統(tǒng)計調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.16.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數(shù),求實數(shù)k的取值范圍.18.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.19.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.20.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大小;(Ⅱ)若的面積為,,求和的值.21.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數(shù)學期望;②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說明你的理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.2.D【解析】

根據(jù)中點在軸上,設(shè)出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查利用導數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.3.C【解析】

利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。4.B【解析】

因為時針經(jīng)過2小時相當于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針所轉(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎(chǔ)題.5.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.6.B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.7.A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.8.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質(zhì);2.分類討論的數(shù)學思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.9.C【解析】

根據(jù)直線過定點,采用數(shù)形結(jié)合,可得最多交點個數(shù),然后利用對稱性,可得結(jié)果.【詳解】由題可知:直線過定點且在是關(guān)于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關(guān)于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應(yīng)用,數(shù)形結(jié)合,難點在于正確畫出圖像,同時掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.10.C【解析】

寫出展開式的通項公式,令,即,則可求系數(shù).【詳解】的展開式的通項公式為,令,即時,系數(shù)為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎(chǔ)題.11.A【解析】

設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.12.D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.0.35【解析】

根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.14.【解析】

將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.15.3000【解析】

根據(jù)正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點睛】本題考查正態(tài)曲線的對稱性的應(yīng)用,是基礎(chǔ)題.16.【解析】

利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個整數(shù),當時,則M中僅有的整數(shù)為;當時,則M中僅有的整數(shù)為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數(shù)為,所以,即;當,即時,M中僅有的整數(shù)為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類討論思想與運算能力.18.證明見解析;1.【解析】

由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當?shù)男甭蕿闀r,,,于是,到的距離為,直線與圓相切.當?shù)男甭什粸闀r,設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當?shù)忍柍闪?,所以面積的最小值為1.【點睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉(zhuǎn)化思想,屬于難題.19.(1);(2)見解析【解析】

(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊斉c軸垂直時,設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達定理的應(yīng)用,考查了學生的計算能力,是中檔題.20.(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大?。唬á颍┩ㄟ^面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論