山東省濰坊市第七中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
山東省濰坊市第七中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
山東省濰坊市第七中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
山東省濰坊市第七中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
山東省濰坊市第七中學(xué)2022年高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若sin(α+3π2A.-12 B.-132.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.135.函數(shù)的圖像大致為()A. B.C. D.6.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.7.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.8.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加9.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.10.復(fù)數(shù)的虛部為()A. B. C.2 D.11.若復(fù)數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或12.已知是定義是上的奇函數(shù),滿足,當(dāng)時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.14.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點,則的值最小時,___.15.已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是____________16.已知是第二象限角,且,,則____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.18.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設(shè)平面與交于點,求證:為的中點.19.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.20.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設(shè)角,周長為y,求的最大值.21.(12分)改革開放年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全意識調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強(qiáng).求的值,并估計該城市駕駛員交通安全意識強(qiáng)的概率;已知交通安全意識強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);安全意識強(qiáng)安全意識不強(qiáng)合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機(jī)選取人對未來一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中22.(10分)在平面直角坐標(biāo)系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.2、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.3、A【解析】

根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎(chǔ)題.4、D【解析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.5、A【解析】

根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當(dāng)時,,當(dāng),,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.7、B【解析】

求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.8、C【解析】

根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計下來產(chǎn)量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.9、B【解析】

由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.10、D【解析】

根據(jù)復(fù)數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算和復(fù)數(shù)的概念.11、C【解析】試題分析:因為復(fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)12、D【解析】

根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,

函數(shù)的周期為3,

∵當(dāng)時,,

令,則,解得或1,

又∵函數(shù)是定義域為的奇函數(shù),

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數(shù)是周期為3的周期函數(shù),

∴方程=0在區(qū)間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運算求解的能力,屬于難題.14、【解析】

根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當(dāng)且僅當(dāng)時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計算能力.15、【解析】

首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時,,當(dāng)時,,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.16、【解析】

由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系及兩角和的正切公式,相對不難,注意運算的準(zhǔn)確性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設(shè),利用椎體的體積公式求得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設(shè),則,四面體的體積.,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.故當(dāng)時,四面體的體積取得最大值.以為坐標(biāo)原點,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點有面面垂直的性質(zhì),線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導(dǎo)數(shù)求解體積的最大值.18、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質(zhì)定理,考查學(xué)生的邏輯推理能力,是一道容易題.19、(1)(2)證明見解析【解析】

(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.20、(1);(2).【解析】

(1)利用正弦定理,結(jié)合題中條件,可以得到,之后應(yīng)用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結(jié)合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當(dāng),即時,.【點睛】該題主要考查的是有關(guān)解三角形的問題,解題的關(guān)鍵是掌握正余弦定理,屬于簡單題目.21、,概率為;列聯(lián)表詳見解析,有的把握認(rèn)為交通安全意識與性別有關(guān);.【解析】

根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強(qiáng)的概率根據(jù)題意可知,安全意識強(qiáng)的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強(qiáng)安全意識不強(qiáng)合計男性女性合計所以有的把握認(rèn)為交通安全意識與性別有關(guān).由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論