2023屆重慶市第四十二中學(xué)中考數(shù)學(xué)仿真試卷含答案解析_第1頁
2023屆重慶市第四十二中學(xué)中考數(shù)學(xué)仿真試卷含答案解析_第2頁
2023屆重慶市第四十二中學(xué)中考數(shù)學(xué)仿真試卷含答案解析_第3頁
2023屆重慶市第四十二中學(xué)中考數(shù)學(xué)仿真試卷含答案解析_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余15頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023屆重慶市第四十二中學(xué)中考數(shù)學(xué)仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在測試卷卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°2.已知一次函數(shù)y=﹣2x+3,當(dāng)0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣73.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°4.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.5.下列計算錯誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b26.如圖,四邊形ABCD是菱形,對角線AC,BD交于點(diǎn)O,,,于點(diǎn)H,且DH與AC交于G,則OG長度為A. B. C. D.7.如圖,數(shù)軸A、B上兩點(diǎn)分別對應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+8.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊9.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.10.如果實(shí)數(shù)a=,且a在數(shù)軸上對應(yīng)點(diǎn)的位置如圖所示,其中正確的是()A.B.C.D.二、填空題(本大題共6個小題,每小題3分,共18分)11.有四張質(zhì)地、大小、反面完全相同的不透明卡片,正面分別寫著數(shù)字1,2,3,4,現(xiàn)把它們的正面向下,隨機(jī)擺放在桌面上,從中任意抽出一張,則抽出的數(shù)字是奇數(shù)的概率是.12.如圖,正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動,完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過的路程為__.13.在函數(shù)y=xx14.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.15.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.16.解不等式組,則該不等式組的最大整數(shù)解是_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長線于點(diǎn)F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.18.(8分)如圖,已知在中,,是的平分線.(1)作一個使它經(jīng)過兩點(diǎn),且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關(guān)系,并說明理由.19.(8分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.20.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點(diǎn)M為上一動點(diǎn)(不包括A,B兩點(diǎn)),射線AM與射線EC交于點(diǎn)F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).21.(8分)為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū).某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:問題1:單價該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?問題2:投放方式該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.22.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.23.(12分)某文教店老板到批發(fā)市場選購A、B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價比B品牌每套套裝進(jìn)價多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.求A、B兩種品牌套裝每套進(jìn)價分別為多少元?若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?24.某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關(guān)系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關(guān)系式;當(dāng)產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當(dāng)產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關(guān)系式;當(dāng)廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題(共10小題,每小題3分,共30分)1、B【答案解析】測試卷解析:∵AB∥CD,且∴在中,故選B.2、B【答案解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【題目詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【答案點(diǎn)睛】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、B【答案解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【答案點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.4、D【答案解析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.5、B【答案解析】

根據(jù)單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【題目詳解】A選項:4x3?1x1=8x5,故原題計算正確;

B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;

C選項:(-x1)5=-x10,故原題計算正確;

D選項:(a-b)1=a1-1ab+b1,故原題計算正確;

故選:B.【答案點(diǎn)睛】考查了整式的乘法,關(guān)鍵是掌握整式的乘法各計算法則.6、B【答案解析】測試卷解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.7、C【答案解析】

本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【題目詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【答案點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).8、B【答案解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.9、C【答案解析】測試卷分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C10、C【答案解析】分析:估計的大小,進(jìn)而在數(shù)軸上找到相應(yīng)的位置,即可得到答案.詳解:由被開方數(shù)越大算術(shù)平方根越大,即故選C.點(diǎn)睛:考查了實(shí)數(shù)與數(shù)軸的的對應(yīng)關(guān)系,以及估算無理數(shù)的大小,解決本題的關(guān)鍵是估計的大小.二、填空題(本大題共6個小題,每小題3分,共18分)11、【答案解析】測試卷分析:這四個數(shù)中,奇數(shù)為1和3,則P(抽出的數(shù)字是奇數(shù))=2÷4=.考點(diǎn):概率的計算.12、AB,【答案解析】

根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點(diǎn)的位置.再由勾股定理就可以求出小球第5次碰撞所經(jīng)過路程的總長度.【題目詳解】根據(jù)已知中的點(diǎn)E,F的位置,可知入射角的正切值為,第一次碰撞點(diǎn)為F,在反射的過程中,根據(jù)入射角等于反射角及平行關(guān)系的三角形的相似可得,第二次碰撞點(diǎn)為G,在AB上,且AG=AB,第三次碰撞點(diǎn)為H,在AD上,且AH=AD,第四次碰撞點(diǎn)為M,在DC上,且DM=DC,第五次碰撞點(diǎn)為N,在AB上,且BN=AB,第六次回到E點(diǎn),BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經(jīng)過的路程為:++++=,故答案為AB,.【答案點(diǎn)睛】本題考查了正方形與軸對稱的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與軸對稱的性質(zhì).13、x≠-3【答案解析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)分式分母不為0的條件,要使xx+3在實(shí)數(shù)范圍內(nèi)有意義,必須14、10%【答案解析】

本題可設(shè)這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【題目詳解】解:設(shè)這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【答案點(diǎn)睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎(chǔ).15、﹣【答案解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.16、x=1.【答案解析】

先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【題目詳解】,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,2,1,則該不等式組的最大整數(shù)解是x=1.故答案為:x=1.【答案點(diǎn)睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共8題,共72分)17、(1)證明見解析;(2)2.【答案解析】

(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【題目詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【答案點(diǎn)睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.18、(1)見解析;(2)與相切,理由見解析.【答案解析】

(1)作出AD的垂直平分線,交AB于點(diǎn)O,進(jìn)而利用AO為半徑求出即可;

(2)利用半徑相等結(jié)合角平分線的性質(zhì)得出OD∥AC,進(jìn)而求出OD⊥BC,進(jìn)而得出答案.【題目詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點(diǎn)和,②作直線,與相交于點(diǎn),③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【答案點(diǎn)睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質(zhì)等知識,掌握切線的判定方法是解題關(guān)鍵.19、(1);(2)【答案解析】

(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進(jìn)而利用概率公式求出答案.【題目詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結(jié)果,其中投放的兩袋垃圾同類的有4種結(jié)果,所以投放的兩袋垃圾同類的概率為=.【答案點(diǎn)睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)詳見解析;(2)2;②1或【答案解析】

(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問題;②分兩種情形討論求解即可.【題目詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【答案點(diǎn)睛】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.21、問題1:A、B兩型自行車的單價分別是70元和80元;問題2:a的值為1【答案解析】

問題1:設(shè)A型車的成本單價為x元,則B型車的成本單價為(x+10)元,依題意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B兩型自行車的單價分別是70元和80元;問題2:由題可得,×1000+×1000=10000,解得a=1,經(jīng)檢驗:a=1是分式方程的解,故a的值為1.22、(1)∠EPF=120°;(2)AE+AF=6.【答案解析】測試卷分析:(1)過點(diǎn)P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.測試卷解析:(1)如圖1,過點(diǎn)P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【答案點(diǎn)睛】運(yùn)用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.23、(1)A種品牌套裝每套進(jìn)價為1元,B種品牌套裝每套進(jìn)價為7.5元;(2)最少購進(jìn)A品牌工具套裝2套.【答案解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論