版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NeuronalElectricActivities
神經(jīng)元的電活動(dòng)主講教師劉風(fēng)雨萬有神經(jīng)科學(xué)研究所、神經(jīng)生物學(xué)系NeuronalElectricActivities
神NeuronalElectricActivitiesInclude:RestPotential
(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter3
TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3
TheNeuronalMembranCytosolandExtracellularFluidWater:Itsunevendistributionofelectricalcharge,soH2OisapolarmoleculeIons:SaltdissolvesreadilyinwaterbecausethechargedportionsofthewatermoleculehaveastrongerattractionfortheionsthantheyhaveforeachotherCytosolandExtracellularFluiThePhospholipidMembrane(磷脂膜)Thelipidsoftheneuronalmembraneforming:abarriertowater-solubleionsabarriertowater頭端-極性磷酸鹽-親水尾端-非極性碳?xì)浠衔?疏水5ThePhospholipidMembrane(磷脂膜ProteinTheseproteinsprovideroutesforionstocrosstheneuronalmembrane.Therestingandactionpotentialsdependonspecialproteinsthatspanthephospholipidbilayer.ProteinTheseproteinsprovideProtein–AminoAcidsProtein–AminoAcidsThePeptideBond(肽鍵)and
aPolypeptide(多肽)ThePeptideBond(肽鍵)and
aPFigure3.6ProteinStructureTheprimarystructureThesecondarystructureThetertiarystructureThequaternarystructureEachofthedifferentpolypeptidescontributingtoaproteinwithquaternarystructureiscalledasubunit(亞基).Figure3.6ProteinStructureThChannelProteinsChannelproteinissuspendedinaphospholipidbilayer,withitshydrophobic
(疏水的)portioninsidethemembranehydrophilic
(親水的)endsexposedtothewateryenvironmentsoneithersideFigure3.7AMembraneIonChannel10ChannelProteinsChannelproteiTwoPropertiesofIonChannelsIonselectivity(離子選擇性)ThediameteroftheporeThenatureoftheRgroupsliningitGating(門控特性)Channelswiththispropertycanbeopenedandclosed-gatedbychangesinthelocalmicroenvironmentofthemembraneTwoPropertiesofIonChannelsIonPumps(離子泵)IonpumpsareenzymesthatusetheenergyreleasedbythebreakdownofATPtotransportcertainionsacrossthemembraneIonPumps(離子泵)IonpumpsareeChapter3
TheNeuronalMembraneatRestTHECASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTHEMOVEMENTOFIONSDiffusionElectricityTHEIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3
TheNeuronalMembranTHEMOVEMENTOFIONSAchannelacrossamembraneislikeabridgeacrossariver.AnopenchannelAnetmovementofionsacrossthemembrane.Ionmovementrequiresthatexternalforcesbeappliedtodriveionsacross.Twofactorsinfluenceionmovementthroughchannels:Diffusion(擴(kuò)散)Electricity
(電勢(shì)差)THEMOVEMENTOFIONSAchannelDiffusionTemperature-dependentrandommovementofionsandmoleculestendstodistributetheionsevenlythroughoutthesolutionsothatthereisanetmovementofionsfromregionsofhighconcentrationtoregionsoflowconcentration.Thismovementiscalleddiffusion
(擴(kuò)散).Adifferenceinconcentrationiscalledaconcentrationgradient
(濃度梯度).15DiffusionTemperature-dependentFigure3.8DiffusionDrivingionsacrossthemembranebydiffusionhappenswhenThemembranepossesseschannelspermeabletotheionsThereisaconcentrationgradientacrossthemembraneFigure3.8DiffusionDrivingioElectricityAnotherwaytoinduceanetmovementofionsinasolutionistouseanelectricalfield(電場(chǎng)),becauseionsareelectricallychargedparticles.Oppositechargesattractandlikechargesrepel.ElectricityAnotherwaytoinduFigure3.9
ThemovementofionsinfluencedbyanelectricalfieldOppositechargesattractandlikechargesrepelFigure3.9
ThemovementofioElectricityTwoimportantfactorsdeterminehowmuchcurrent(I)willflow:Electricalpotential(V,電勢(shì))Electricalconductance(g,電導(dǎo))Electricalconductance
Electricalresistance(電阻,R=1/g)Ohm’slaw:I=gVElectricityTwoimportantfactoFigure3.10ElectricalcurrentflowacrossamembraneDrivinganionacrossthemembraneelectricallyrequiresThemembranepossesseschannelspermeabletotheionsThereisaelectricalpotentialdifferenceacrossthemembrane20Figure3.10ElectricalcurrentDiffusionandElectricityElectricalchargedionsinsolutiononeithersideoftheneuronalmembrane.(帶電離子溶解在細(xì)胞膜兩側(cè)的溶液中)Ionscancrossthemembraneonlybyproteinchannel.(離子必須通過離子通道實(shí)現(xiàn)跨膜運(yùn)動(dòng))Theproteinchannelscanbehighlyselectiveforspecificions.(離子通道對(duì)離子具有高度的選擇性)Themovementofanyionthroughchanneldependsontheconcentrationgradientandthedifferenceinelectricalpotential
acrossthemembrane.(離子的跨膜運(yùn)動(dòng)依賴于膜兩側(cè)的濃度梯度和電位差)DiffusionandElectricityElectChapter3
TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3
TheNeuronalMembranThemembranepotential(膜電位)isthevoltageacrosstheneuronalmembraneatanymoment,representedbythesymbolmV.Microelectrode(微電極)andmVmeasurementTHEIONICBASISOFTHERESTINGMEMBRANEPOTENTIAL(靜息電位)Themembranepotential(膜電位)iEstablishingEquilibriumPotential(平衡電位)Figure3.12EstablishingequilibriuminaselectivelypermeablemembraneNopotentialdifferenceVm=0mVThediffusionalforce=TheelectricalforceVm=-80mV20:1EstablishingEquilibriumPotenEquilibriumpotentialsTheelectricalpotentialdifferencethatexactlybalancesanionicconcentrationgradientiscalledanionicequilibriumpotential,orsimplyequilibriumpotential
(當(dāng)離子移動(dòng)所產(chǎn)生的電位差和離子移動(dòng)所造成的濃度勢(shì)能差平衡時(shí),不再有離子的凈移動(dòng),這時(shí)膜兩側(cè)的電位差稱為離子的平衡電位)Generatingasteadyelectricalpotentialdifferenceacrossamembranerequires
Anionicconcentrationgradient
Selectiveionicpermeability25EquilibriumpotentialsTheelecBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:Largechangesinmembranepotentialarecausedbyminusculechangesinionicconcentrations(僅需要微小的離子濃度改變就可以引起膜電位大幅度的變化)100mM99.99999mMVm=-80mVVm=0mVBeforemovingontothesituatBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:2.Thenetdifferenceinelectricalchargeoccursattheinsideandoutsidesurfacesofthemembrane(膜內(nèi)外兩側(cè)電荷的不同僅僅分布于膜的內(nèi)外側(cè)面,而不是分布于整個(gè)細(xì)胞的內(nèi)外液)Figure3.13(5nm)BeforemovingontothesituatBeforemovingontothesituationinrealneurons,fourimportantpointsshouldbemade:Ionsaredrivenacrossthemembraneatarateproportionaltothedifferencebetweenthemembranepotentialandtheequilibriumpotential(離子的跨膜速率與膜電位和平衡電位的差值成正比).NetmovementofK+occursasthemembranepotentialdifferedfromtheequilibriumpotential.Thisdifference(Vm-Eion)iscalledtheionicdrivingforce(離子驅(qū)動(dòng)力).Iftheconcentrationdifferenceacrossthemembraneisknownforanion,anequilibriumpotentialcanbecalculatedforthation(根據(jù)某離子膜兩側(cè)濃度的差值可以計(jì)算該離子的平衡電位).BeforemovingontothesituatNa+EquilibriumPotentialFigure3.14AnotherexampleestablishingequilibriuminaselectivelypermeablemembraneNa+EquilibriumPotentialFiguTheNernstEquationTheexactvalueofanequilibriumpotentialinmVcanbecalculatedusingtheNernstequation,whichtakesintoconsideration:ThechargeoftheionThetemperatureTheratiooftheexternalandinternalionconcentrationsPage64.Box3.2.MarkF.Bear,etal.ed.Neuroscience:ExploringtheBrain.2ndedition.EK=2.303log
30TheNernstEquationTheexactvFigure3.15Figure3.15Approximateionconcentrationsoneithersideofaneuronalmembrane.Figure3.15Figure3.15RelativeIonPermeabilitiesofMembraneatRestTherestingmembranepermeabilityisfortytimesgreatertoK+thantoNa+Therestingmembranepotentialis–65mVRelativeIonPermeabilitiesofTheDistributionofIonsAcrosstheMembraneIonicconcentrationgradientsareestablishedbytheactionsofionspumpsintheneuronalmembrane(膜內(nèi)外兩側(cè)的離子濃度梯度的形成依賴于離子泵的活動(dòng))Twoimportantionpumps:Thesodium-potassiumpump(鈉鉀泵)isanenzymethatbreaksdownATPinthepresenceofinternalNa+.Thecalciumpump(鈣泵)isanenzymethatactivelytransportsCa2+outofthecytosolacrossthecellmembrane.TheDistributionofIonsAcrosFigure3.16Figure3.16Thesodium-potassiumpump.K+K+Na+Na+Figure3.16Figure3.16ThesoFigure4.4Membranecurrentsandconductances35Figure4.4MembranecurrentsanThemostpotassiumchannelshavefoursubunitsthatarearrangedlikethestavesofabarreltoformaporeOfparticularinterestisaregioncalledtheporeloop(孔袢),whichcontributestotheselectivityfilterthatmakesthechannelpermeablemostlytoK+ions.ThewideworldofpotassiumchannelsThemostpotassiumchannelshaFigure3.18Figure3.18AviewoftheatomicstructureofthepotassiumchannelporeFigure3.18Figure3.18TheimportanceofregulatingtheexternalpotassiumconcentrationIncreasingextracellularpotassiumdepolarizesneuronsFigure3.19Thedependenceofmembranepotentialonexternalpotassiumconcentration.550-65-17TheimportanceofregulatingtTwoprotectivemechanismsinthebrainBlood-brainbarrier(血腦屏障)limitsthemovementofpotassium(andotherblood-bornesubstances)intotheextracellularfluidofthebrainGlia,particularlyastrocytes,takeupextracellularK+wheneverconcentrationsrise,astheynormallydoduringperiodsofneuralactivity.TwoprotectivemechanismsintFigure3.20Figure3.20Potassiumspatialbufferingbyastrocytes.Whenbrain[K+]oincreasesasaresultoflocalneuralactivity,K+entersastrocytesviamembranechannels.TheextensivenetworkofastrocyticprocesseshelpsdissipatetheK+overalargearea.40Figure3.20Figure3.2040Chapter3
TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3
TheNeuronalMembranNeuronalElectricActivitiesInclude:RestPotential(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaMethodsofRecordingActionPotentials細(xì)胞內(nèi)記錄細(xì)胞外記錄示波器MethodsofRecordingActionPoTheUpsandDownsofanActionPotentials上升支(去極化)下降支(復(fù)極化)超射超極化激活后電位2ms-65mV45TheUpsandDownsofanActionGenerationofanactionpotentialTheperceptionofsharppainwhenathumbtackentersyourfootiscausedbythegenerationofactionpotentialsincertainnervefibersintheskin:Thethumbtackenterstheskin(圖釘扎入皮膚)Themembraneofthenervefibersintheskinisstretched(感覺神經(jīng)纖維的細(xì)胞膜被牽拉)Na+-permeablechannelsopen.TheentryofNa+depolarizesthemembrane(Na+通道打開,細(xì)胞膜產(chǎn)生去極化)Thecriticallevelofdepolarizationthatmustbecrossedinordertotriggeranactionpotentialiscalledthreshold(閾電位).Actionpotentialarecausedbydepolarizationofthemembranebeyondthreshold.GenerationofanactionpotentThedepolarizationthatcausesactionpotentialarisesindifferentwaysindifferentneurons
(引起去極化的不同方式):CausedbytheentryofNa+throughspecializedionchannelsthatsensitivetomembranestretching
(膜的牽拉)Ininterneurons,depolarizationisusuallycausedbyNa+entrythroughchannelsthataresensitivetoneurotransmitters(神經(jīng)遞質(zhì)的釋放)
releasedbyotherneurons3.Inadditiontothesenaturalroutes,neuronscanbedepolarizedbyinjectingelectricalcurrent(注入電流)throughamicroelectrode,amethodcommonlyusedbyneuroscientiststostudyactionpotentialsindifferentcells. Applyingincreasingdepolarizationtoaneuronhasnoeffectuntilitcrossesthreshold,andthen“pop”–oneactionpotential.Forthisreason,actionpotentialsaresaidtobe“all-or-none”(全或無現(xiàn)象).ThedepolarizationthatcausesThegenerationofmultipleactionpotentialsContinuousdepolarizingcurrentManyactionpotentialsinsuccession注入電流ThegenerationofmultipleactThefiringfrequencyofactionpotentialsreflectsthemagnitudeofthedepolarizingcurrent
(頻率反應(yīng)去極化電流的大小)Thisisonewaythatstimulationintensityisencodedinthenervoussystem(中樞神經(jīng)系統(tǒng)編碼刺激強(qiáng)度的一種方式)ThefiringfrequencyofactionThoughfiringfrequencyincreaseswiththeamountofdepolarizingcurrent,thereisalimittotherateatwhichaneuroncangenerateactionpotentials.Absoluterefractoryperiod(絕對(duì)不應(yīng)期)Onceanactionpotentialisinitiated,itisimpossibletoinitiateanotherforabout1ms(動(dòng)作電位產(chǎn)生后1ms,不可能產(chǎn)生別的動(dòng)作電位)Relativerefractoryperiod(相對(duì)不應(yīng)期)Theamountofcurrentrequiredtodepolarizetheneurontoactionpotentialthresholdiselevatedabovenormal(絕對(duì)不應(yīng)期之后的幾個(gè)ms,需要比正常更大的閾電流才能爆發(fā)動(dòng)作電位)50ThoughfiringfrequencyincreaChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaTHEACTIONPOTENTIALINTHEORYDepolarizationofthecellduringtheactionpotentialiscausedbytheinfluxofsodiumionsacrossthemembrane(去極化是鈉離子內(nèi)流造成的)Repolarizationiscausedbytheeffluxofpotassiumions(復(fù)極化是鉀離子外流造成的)THEACTIONPOTENTIALINTHEORYTheInsandOutsofActionPotentialTherisingphase
AverylargedrivingforceonNa+
(-80-62)mV=-142mV
ThemembranepermeabilitytoNa+
>K+Depolarizationofthemembranebeyondthreshold,membranesodiumchannelsopened.ThiswouldallowNa+toentertheneuron,causingamassivedepolarizationuntilthemembranepotentialapproachedENa.Thefallingphase
ThedominantmembraneionpermeabilitytoK+K+flowoutofthecelluntilthemembranepotentialapproachedEK.TheInsandOutsofActionPotTheinsandoutsandupsanddownsoftheactionpotentialinanidealneuronisshownasbelow:(Fig4.5)Theinsandoutsandupsandd5555Chapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaVoltageclamp(電壓鉗)provestheabovetheory:Voltageclamp(電壓鉗)provestheTheVoltage-GatedSodiumChannel
(電壓門控的鈉離子通道)TheproteinformsaporeinthemembranethatishighlyselectivetoNa+ions(對(duì)Na+具有高度的選擇性).Theporeisopenedandclosedbychangesintheelectricalpotentialofthemembrane(Na+通道的開放和關(guān)閉具有電壓依從性).TheVoltage-GatedSodiumChannSodiumchannelstructure
(Na+通道的結(jié)構(gòu))CreatedfromasinglelongpolypeptideHas4distinctdomains,numberedI-IV.ThefourdomainsarebelievedtoclumptogethertoformaporebetweenthemEachdomainconsistsof6transmembranealphahelices,numberedS1-S6Thechannelhasporeloopsthatareassembledintoaselectivityfilter60Sodiumchannelstructure
(Na+Figure4.6Structureofthevoltage-gatedsodiumchannel(a)Howthesodiumchannelpolypeptidechainisbelievedtobewovenintothemembrane.Themoleculeconsistsoffourdomains,I-IV.Eachdomainconsistsof6alphahelices,whichpassbackandforthacrossthemembraneFigure4.6Figure4.6(b)AnexpandedviewofonedomainshowingthevoltagesensorofalphahelixS4andtheporeloop(red),whichcontributestotheselectivityfilter(c)Aviewofthemoleculeshowinghowthedomainsmayarrangethemselvestoformaporebetweenthem.電壓感受器Figure4.6(b)AnexpandedviewFigure4.7Whenthemembraneisdepolarizedtothreshold,themoleculetwistsintoaconfigurationthatallowsthepassageofNa+throughthepore.
ThevoltagesensorresidesinsegmentS4ofthemolecule.Inthissegment,positivelychargedaminoacidresiduesareregularlyspacedalongthecoilsofthehelix.
Thus,theentiresegmentcanbeforcedtomovebychangingthemembranepotential.DepolarizationpushesS4awayfromtheinsideofthemembrane,andthisconformationalchangeinthemoleculecausesthegatetoopen.Figure4.7WhenthemembraneisThepatch-clamp(膜片鉗)Method-40mV65Thepatch-clamp(膜片鉗)Method-Functionalpropertiesofthesodiumchannel(Na+通道的功能)TheyopenwithlittledelayTheystayopenforabout1msandthenclose(inactivate)Theycannotbeopenedagainbydepolarizationuntilthemembranepotentialreturnsto–65mV關(guān)閉開放失活去失活FunctionalpropertiesofthesFunctionalpropertiesofthesodiumchannelFigure4.9(c)Amodelforhowchangesintheconformationofthesodiumchannelproteinmightyielditsfunctionalproperties.Theclosed(關(guān)閉)channel;
Opens(開放)uponmembranedepolarization;
Inactivation(失活)occurswhenaglobularportionoftheproteinswingsupandoccludesthepore;
Deinactivation(去失活)occurswhentheglobularportionswingsawayandtheporeclosesbymovementofthetransmembranedomains關(guān)閉開放失活去失活FunctionalpropertiesofthesToxinsonthesodiumchannelTetrodotoxin(TTX,河豚毒素)andsaxitoxinChannel-blockingtoxinBatrachotoxin,veratridineandaconitineOpenthechannelsinappropriatelyOpenatmorenegativepotentialsOpenmuchlongerthanusualToxinsonthesodiumchannelTePuttingthePiecesTogether(page89)ThresholdRisingphaseOvershootFallingphaseUndershootAbsoluterefractoryperiodRelativerefractoryperiodPuttingthePiecesTogether(pFigure4.10Themolecularbasisoftheactionpotential70Figure4.10ThemolecularbasiChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaFigure4.11ActionpotentialconductionFigure4.11Actionpotentialconduction.Theentryofpositivechargeduringtheactionpotentialcausesthemembranejustaheadtodepolarizetothreshold(已經(jīng)興奮的膜部分通過局部電流“刺激”了未興奮的膜部分,使之出現(xiàn)動(dòng)作電位)AnactionpotentialpropagatesinonedirectionAnactionpotentialcanbegeneratedbydepolarizationateitherendoftheaxonandthereforepropagateineitherdirectionFigure4.11ActionpotentialcFactorsInfluencingConductionVelocityActionpotentialconductionvelocityincreaseswithincreasingaxonaldiameter(軸突的直徑)Axonalsizeandthenumberofvoltage-gatedchannelsinthemembranealsoaffectaxonalexcitability(軸突上鈉離子通道的密度).Temperature
(溫度)FactorsInfluencingConductionMyelinandSaltatoryConductionMyelin(髓鞘)SchwanncellsintheperipheralnervoussystemOligodendrogliainthecentralnervoussystemVoltage-gatedsodiumchannelsareconcentratedinthemembraneofthenodesofRanvier(郎飛結(jié))Inmyelinatedaxones,actionpotentialsskipfromnodetonode(Saltatoryconduction跳躍式傳導(dǎo))MyelinandSaltatoryConductioMyelinandSaltatoryConductionInmyelinatedaxones,actionpotentialsskipfromnodetonode(Saltatoryconduction)75MyelinandSaltatoryConductioChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaSpike-initiationzoneOnlymembranethatcontains
voltage-gatedsodiumchannelsiscapableofgeneratingactionpotential.Voltage-gatedsodiumchannels
Theaxons>ThedendritesTheaxons>ThecellbodiesThepartoftheneuronwhereanaxonoriginatesfromthesoma,theaxonhillock(軸丘),isoftenalsocalledthespike-initiationzone(動(dòng)作電位起始點(diǎn)).Spike-initiationzoneOnlymembFigure4.14MembraneproteinspecifythefunctionofdifferentpartsoftheneuronAcorticalpyramidalneuronAprimarysensoryneuronFigure4.14MembraneproteinsChapter4TheActionPotentialPROPERTIESOFTHEACTIONPOTENTIALTheUpsandDownsofanActionPotentialsGenerationofanActionPotentialTheGenerationofMultipleActionPotentialsTHEACTIONPOTENTIALINTHEORYMembraneCurrentsandConductancesTheInsandOutsofActionPotentialTHEACTIONPOTENTIALINREALITYTheVoltage-GatedSodiumChannelVoltage-GatedPotassiumChannelsPuttingthePiecesTogetherACTIONPOTENTIALCONDUCTIONFactorinfluencingconductionvelocityACTIONPOTENTIALS,AXONS,ANDDENDRITESCONCLUDINGREMARKSChapter4TheActionPotentiaNeuronalElectricActivitiesInclude:RestPotential(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotential80NeuronalElectricActivitiesIKEYTERMSANDREVIEWQUESTIONSP72andP97KEYTERMSANDREVIEWQUESTIONSThanksThanksNeuronalElectricActivities
神經(jīng)元的電活動(dòng)主講教師劉風(fēng)雨萬有神經(jīng)科學(xué)研究所、神經(jīng)生物學(xué)系NeuronalElectricActivities
神NeuronalElectricActivitiesInclude:RestPotential
(Chapter3)ActionPotential(Chapter4)LocalPotentialsPost-SynapticPotentialExcitatoryPost-SynapticPotentialInhibitoryPost-SynapticPotentialEnd-platePotentialReceptorPotentialNeuronalElectricActivitiesIChapter3
TheNeuronalMembraneatRestTheCASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTheMOVEMENTOFIONSDiffusionElectricityTheIONICBASISOFRESTINGMEMBRANEPOTENTIALEquilibriumPotentialTheDistributionofIonsAcrosstheMembraneRelativeIonPermeabilitiesofMembraneatRestTheImportanceofRegulatingtheExternalPotassiumConcentrationCONCLUDINGREMARKSChapter3
TheNeuronalMembranCytosolandExtracellularFluidWater:Itsunevendistributionofelectricalcharge,soH2OisapolarmoleculeIons:SaltdissolvesreadilyinwaterbecausethechargedportionsofthewatermoleculehaveastrongerattractionfortheionsthantheyhaveforeachotherCytosolandExtracellularFluiThePhospholipidMembrane(磷脂膜)Thelipidsoftheneuronalmembraneforming:abarriertowater-solubleionsabarriertowater頭端-極性磷酸鹽-親水尾端-非極性碳?xì)浠衔?疏水5ThePhospholipidMembrane(磷脂膜ProteinTheseproteinsprovideroutesforionstocrosstheneuronalmembrane.Therestingandactionpotentialsdependonspecialproteinsthatspanthephospholipidbilayer.ProteinTheseproteinsprovideProtein–AminoAcidsProtein–AminoAcidsThePeptideBond(肽鍵)and
aPolypeptide(多肽)ThePeptideBond(肽鍵)and
aPFigure3.6ProteinStructureTheprimarystructureThesecondarystructureThetertiarystructureThequaternarystructureEachofthedifferentpolypeptidescontributingtoaproteinwithquaternarystructureiscalledasubunit(亞基).Figure3.6ProteinStructureThChannelProteinsChannelproteinissuspendedinaphospholipidbilayer,withitshydrophobic
(疏水的)portioninsidethemembranehydrophilic
(親水的)endsexposedtothewateryenvironmentsoneithersideFigure3.7AMembraneIonChannel10ChannelProteinsChannelproteiTwoPropertiesofIonChannelsIonselectivity(離子選擇性)ThediameteroftheporeThenatureoftheRgroupsliningitGating(門控特性)Channelswiththispropertycanbeopenedandclosed-gatedbychangesinthelocalmicroenvironmentofthemembraneTwoPropertiesofIonChannelsIonPumps(離子泵)IonpumpsareenzymesthatusetheenergyreleasedbythebreakdownofATPtotransportcertainionsacrossthemembraneIonPumps(離子泵)IonpumpsareeChapter3
TheNeuronalMembraneatRestTHECASTOFCHEMICALSCytosolandExtracellularFluidThePhospholipidMembraneProteinTHEMOVEMENTOFIO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版?zhèn)€人商鋪?zhàn)赓U與租戶權(quán)益保障合同3篇
- 2024版事業(yè)單位員工退休待遇合同2篇
- 2024版代持股股權(quán)激勵(lì)與員工持股計(jì)劃合同3篇
- 2024年標(biāo)準(zhǔn)化企業(yè)食堂運(yùn)營承包合同范本版B版
- 2024年個(gè)體工商戶策略聯(lián)盟協(xié)議3篇
- 2024年標(biāo)準(zhǔn)買賣樹協(xié)議文本3篇
- 2024年標(biāo)準(zhǔn)化人力資源服務(wù)協(xié)議范本版B版
- 2024年度內(nèi)衣套裝個(gè)性化定制服務(wù)合作協(xié)議3篇
- 2024年度項(xiàng)目合作合同:共同開發(fā)新型產(chǎn)品3篇
- 2024版黨建與企業(yè)志愿服務(wù)合作協(xié)議3篇
- 消防行車安全教育課件
- 海洋平臺(tái)深水管道高效保溫技術(shù)
- 《新疆大學(xué)版學(xué)術(shù)期刊目錄》(人文社科)
- 充電樁維保投標(biāo)方案
- 《如何寫文獻(xiàn)綜述》課件
- 肛瘺LIFT術(shù)式介紹
- 通過《古文觀止》選讀了解古代文學(xué)的社會(huì)功能與價(jià)值
- 語言本能:人類語言進(jìn)化的奧秘
- 職業(yè)生涯規(guī)劃(圖文)課件
- 2024版國開電大??啤禘XCEL在財(cái)務(wù)中的應(yīng)用》在線形考(形考作業(yè)一至四)試題及答案
- 能源管理系統(tǒng)平臺(tái)軟件數(shù)據(jù)庫設(shè)計(jì)說明書
評(píng)論
0/150
提交評(píng)論