云南省巧家縣2022年中考數(shù)學(xué)四模試卷含解析_第1頁
云南省巧家縣2022年中考數(shù)學(xué)四模試卷含解析_第2頁
云南省巧家縣2022年中考數(shù)學(xué)四模試卷含解析_第3頁
云南省巧家縣2022年中考數(shù)學(xué)四模試卷含解析_第4頁
云南省巧家縣2022年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對(duì)折再量木條,木條剩余一尺,問木條長多少尺”,設(shè)繩子長尺,木條長尺,根據(jù)題意所列方程組正確的是()A. B. C. D.2.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:次序第一次第二次第三次第四次第五次甲命中的環(huán)數(shù)(環(huán))67868乙命中的環(huán)數(shù)(環(huán))510767根據(jù)以上數(shù)據(jù),下列說法正確的是()A.甲的平均成績(jī)大于乙 B.甲、乙成績(jī)的中位數(shù)不同C.甲、乙成績(jī)的眾數(shù)相同 D.甲的成績(jī)更穩(wěn)定3.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認(rèn)為其中正確信息的個(gè)數(shù)有A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)4.﹣3的相反數(shù)是()A. B. C. D.5.甲、乙兩超市在1月至8月間的盈利情況統(tǒng)計(jì)圖如圖所示,下面結(jié)論不正確的是()A.甲超市的利潤逐月減少B.乙超市的利潤在1月至4月間逐月增加C.8月份兩家超市利潤相同D.乙超市在9月份的利潤必超過甲超市6.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2897.不等式組的整數(shù)解有()A.0個(gè) B.5個(gè) C.6個(gè) D.無數(shù)個(gè)8.如果一個(gè)正多邊形內(nèi)角和等于1080°,那么這個(gè)正多邊形的每一個(gè)外角等于()A. B. C. D.9.已知點(diǎn)A(0,﹣4),B(8,0)和C(a,﹣a),若過點(diǎn)C的圓的圓心是線段AB的中點(diǎn),則這個(gè)圓的半徑的最小值是()A. B. C. D.210.如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個(gè)數(shù)為()A.4 B.3 C.2 D.1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點(diǎn),與雙曲線y=(x>0)交于第一象限點(diǎn)C,若BC=2AB,則S△AOB=________.12.如圖,在菱形ABCD中,點(diǎn)E、F在對(duì)角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.13.如圖,已知點(diǎn)C為反比例函數(shù)上的一點(diǎn),過點(diǎn)C向坐標(biāo)軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.14.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,容易知道當(dāng)兩張紙條垂直時(shí),菱形的周長有最小值8,那么菱形周長的最大值是_________.15.如圖,10塊相同的長方形墻磚拼成一個(gè)長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.16.如圖,將△AOB繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)后得到,若,則的度數(shù)是_______.三、解答題(共8題,共72分)17.(8分)已知,拋物線的頂點(diǎn)為,它與軸交于點(diǎn),(點(diǎn)在點(diǎn)左側(cè)).()求點(diǎn)、點(diǎn)的坐標(biāo);()將這個(gè)拋物線的圖象沿軸翻折,得到一個(gè)新拋物線,這個(gè)新拋物線與直線交于點(diǎn).①求證:點(diǎn)是這個(gè)新拋物線與直線的唯一交點(diǎn);②將新拋物線位于軸上方的部分記為,將圖象以每秒個(gè)單位的速度向右平移,同時(shí)也將直線以每秒個(gè)單位的速度向上平移,記運(yùn)動(dòng)時(shí)間為,請(qǐng)直接寫出圖象與直線有公共點(diǎn)時(shí)運(yùn)動(dòng)時(shí)間的范圍.18.(8分)如圖,已知點(diǎn)E,F分別是□ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.19.(8分)矩形AOBC中,OB=4,OA=1.分別以O(shè)B,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E。當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.20.(8分)在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點(diǎn)D在線段BC上時(shí),證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),BC、CD、CE之間的數(shù)量關(guān)系為.21.(8分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請(qǐng)?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.22.(10分)如圖1,的余切值為2,,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長,交射線于點(diǎn)P.(1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時(shí)正方形的邊長.23.(12分)解分式方程:24.為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(jī)(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.學(xué)生立定跳遠(yuǎn)測(cè)試成績(jī)的頻數(shù)分布表分組頻數(shù)1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請(qǐng)根據(jù)圖表中所提供的信息,完成下列問題:表中a=,b=,樣本成績(jī)的中位數(shù)落在范圍內(nèi);請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;該校九年級(jí)共有1000名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績(jī)?cè)?.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

本題的等量關(guān)系是:繩長-木長=4.5;木長-×繩長=1,據(jù)此列方程組即可求解.【詳解】設(shè)繩子長x尺,木條長y尺,依題意有.故選A.【點(diǎn)睛】本題考查由實(shí)際問題抽象出二元一次方程組,解題的關(guān)鍵是明確題意,列出相應(yīng)的二元一次方程組.2、D【解析】

根據(jù)已知條件中的數(shù)據(jù)計(jì)算出甲、乙的方差,中位數(shù)和眾數(shù)后,再進(jìn)行比較即可.【詳解】把甲命中的環(huán)數(shù)按大小順序排列為:6,6,7,8,8,故中位數(shù)為7;把乙命中的環(huán)數(shù)按大小順序排列為:5,6,7,7,10,故中位數(shù)為7;∴甲、乙成績(jī)的中位數(shù)相同,故選項(xiàng)B錯(cuò)誤;根據(jù)表格中數(shù)據(jù)可知,甲的眾數(shù)是8環(huán),乙的眾數(shù)是7環(huán),∴甲、乙成績(jī)的眾數(shù)不同,故選項(xiàng)C錯(cuò)誤;甲命中的環(huán)數(shù)的平均數(shù)為:x甲乙命中的環(huán)數(shù)的平均數(shù)為:x乙∴甲的平均數(shù)等于乙的平均數(shù),故選項(xiàng)A錯(cuò)誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因?yàn)?.8>0.8,所以甲的穩(wěn)定性大,故選項(xiàng)D正確.故選D.【點(diǎn)睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.同時(shí)還考查了眾數(shù)的中位數(shù)的求法.3、D【解析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對(duì)稱軸x,∴<1.∴ab>1.故①正確.②如圖,當(dāng)x=1時(shí),y<1,即a+b+c<1.故②正確.③如圖,當(dāng)x=﹣1時(shí),y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當(dāng)x=﹣1時(shí),y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對(duì)稱軸,則.故⑤正確.綜上所述,正確的結(jié)論是①②③④⑤,共5個(gè).故選D.4、D【解析】

相反數(shù)的定義是:如果兩個(gè)數(shù)只有符號(hào)不同,我們稱其中一個(gè)數(shù)為另一個(gè)數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點(diǎn)睛】本題考查相反數(shù),題目簡(jiǎn)單,熟記定義是關(guān)鍵.5、D【解析】【分析】根據(jù)折線圖中各月的具體數(shù)據(jù)對(duì)四個(gè)選項(xiàng)逐一分析可得.【詳解】A、甲超市的利潤逐月減少,此選項(xiàng)正確,不符合題意;B、乙超市的利潤在1月至4月間逐月增加,此選項(xiàng)正確,不符合題意;C、8月份兩家超市利潤相同,此選項(xiàng)正確,不符合題意;D、乙超市在9月份的利潤不一定超過甲超市,此選項(xiàng)錯(cuò)誤,符合題意,故選D.【點(diǎn)睛】本題主要考查折線統(tǒng)計(jì)圖,折線圖是用一個(gè)單位表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點(diǎn),然后把各點(diǎn)用線段依次連接起來.以折線的上升或下降來表示統(tǒng)計(jì)數(shù)量增減變化.6、D【解析】

分兩種情況進(jìn)行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當(dāng)弦AB和CD在圓心同側(cè)時(shí),如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當(dāng)弦AB和CD在圓心異側(cè)時(shí),如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點(diǎn)睛】本題考查了勾股定理和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用,小心別漏解.7、B【解析】

先解每一個(gè)不等式,求出不等式組的解集,再求整數(shù)解即可.【詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個(gè),故選B.【點(diǎn)睛】本題主要考查了不等式組的解法,并會(huì)根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.8、A【解析】

首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個(gè)正多邊形的每一個(gè)外角等于:360°÷8=45°.故選A.【點(diǎn)睛】此題考查了多邊形的內(nèi)角和與外角和的知識(shí).注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.9、B【解析】

首先求得AB的中點(diǎn)D的坐標(biāo),然后求得經(jīng)過點(diǎn)D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點(diǎn)坐標(biāo),再求得交點(diǎn)與D之間的距離即可.【詳解】AB的中點(diǎn)D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點(diǎn)的坐標(biāo)是(3,-3).則這個(gè)圓的半徑的最小值是:=.

故選:B【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.10、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B.考點(diǎn):四邊形綜合題.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)題意可設(shè)出點(diǎn)C的坐標(biāo),從而得到OA和OB的長,進(jìn)而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點(diǎn),與雙曲線y=交于第一象限點(diǎn)C,若BC=2AB,設(shè)點(diǎn)C的坐標(biāo)為(c,)∴OA=0.5c,OB==,∴S△AOB===【點(diǎn)睛】此題主要考查反比例函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意設(shè)出C點(diǎn)坐標(biāo)進(jìn)行求解.12、【解析】

利用正方形對(duì)角線相等且互相平分,得出EO=AO=BE,進(jìn)而得出答案.【詳解】解:∵四邊形AECF為正方形,

∴EF與AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案為:【點(diǎn)睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.13、1【解析】

解:由于點(diǎn)C為反比例函數(shù)上的一點(diǎn),則四邊形AOBC的面積S=|k|=1.故答案為:1.14、1【解析】

畫出圖形,設(shè)菱形的邊長為x,根據(jù)勾股定理求出周長即可.【詳解】當(dāng)兩張紙條如圖所示放置時(shí),菱形周長最大,設(shè)這時(shí)菱形的邊長為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長為1cm.

故答案是:1.【點(diǎn)睛】解答關(guān)鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.15、x+x=75.【解析】試題解析:設(shè)長方形墻磚的長為x厘米,

可得:x+x=75.16、60°【解析】

根據(jù)題意可得,根據(jù)已知條件計(jì)算即可.【詳解】根據(jù)題意可得:,故答案為60°【點(diǎn)睛】本題主要考查旋轉(zhuǎn)角的有關(guān)計(jì)算,關(guān)鍵在于識(shí)別那個(gè)是旋轉(zhuǎn)角.三、解答題(共8題,共72分)17、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據(jù)拋物線的頂點(diǎn)坐標(biāo)列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質(zhì)寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點(diǎn)坐標(biāo)即可;②當(dāng)t=0時(shí),直線與拋物線只有一個(gè)交點(diǎn)N(3,-6)(相切),此時(shí)直線與G無交點(diǎn);第一個(gè)交點(diǎn)出現(xiàn)時(shí),直線過點(diǎn)C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個(gè)交點(diǎn)是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因?yàn)閽佄锞€的頂點(diǎn)為M(-1,-2),所以對(duì)稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯(lián)立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個(gè)根,所以點(diǎn)N(3,-6)是唯一的交點(diǎn);②≤t≤6.【點(diǎn)睛】本題主要考查了圖形運(yùn)動(dòng),解本題的要點(diǎn)在于熟知一元二次方程的相關(guān)知識(shí)點(diǎn).18、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點(diǎn)O,運(yùn)用解直角三角形的知識(shí)點(diǎn),可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點(diǎn)E是BC邊的中點(diǎn),∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點(diǎn)O,∴AC⊥EF于點(diǎn)O,點(diǎn)O是AC中點(diǎn).∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點(diǎn):1.菱形的性質(zhì)和面積;2.平行四邊形的性質(zhì);3.解直角三角形.19、(1)E(2,1);(2);(1).【解析】

(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CE,即可得出結(jié)論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點(diǎn),∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點(diǎn)的坐標(biāo)為1,∴E(2,1);(2)∵F點(diǎn)的橫坐標(biāo)為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標(biāo)為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點(diǎn)E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點(diǎn)睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點(diǎn)坐標(biāo)公式,相似三角形的判定和性質(zhì),銳角三角函數(shù),求出CE:CF是解本題的關(guān)鍵.20、探究:證明見解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;

應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應(yīng)用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根據(jù)勾股定理得,DE=,

∴△DCE的周長為CD+CE+DE=2+

故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案為BC=CE-CD.21、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質(zhì)填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊三角形的判定與性質(zhì),重點(diǎn)在于邏輯思維能力的訓(xùn)練.22、(1)④⑤;(2);(3)或.【解析】

(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設(shè),則,利用勾股定理得,解得,即,,設(shè)正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論