插值法:原理與應(yīng)用課件_第1頁(yè)
插值法:原理與應(yīng)用課件_第2頁(yè)
插值法:原理與應(yīng)用課件_第3頁(yè)
插值法:原理與應(yīng)用課件_第4頁(yè)
插值法:原理與應(yīng)用課件_第5頁(yè)
已閱讀5頁(yè),還剩103頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

插值法:原理與應(yīng)用ZhenhuaSong插值法:原理與應(yīng)用ZhenhuaSong插值的背景1.只有n個(gè)點(diǎn)處的函數(shù)值希望找到一條通過(guò)這些點(diǎn)的曲線(連續(xù)、光滑)2.函數(shù)太麻煩,近似簡(jiǎn)化找到一個(gè)好計(jì)算的函數(shù),近似代替3.用多項(xiàng)式代替多項(xiàng)式方便求值、求導(dǎo)、積分等插值的背景1.只有n個(gè)點(diǎn)處的函數(shù)值插值&逼近&擬合0.給定n個(gè)不同的點(diǎn),構(gòu)造曲線1.插值:曲線依次通過(guò)n個(gè)點(diǎn)2.逼近:曲線最接近n個(gè)點(diǎn)(接近:在某種意義下)例:最小二乘法3.擬合:插值+逼近插值&逼近&擬合0.給定n個(gè)不同的點(diǎn),構(gòu)造曲線泰勒展開在某一點(diǎn)x0處展開只在x0處近似性較好遠(yuǎn)離x0的點(diǎn)誤差較大需要n個(gè)點(diǎn)近似性較好插值可以勝任泰勒展開在某一點(diǎn)x0處展開一次插值用一次函數(shù)近似表示一次插值用一次函數(shù)近似表示二次插值用二次函數(shù)來(lái)表示二次插值用二次函數(shù)來(lái)表示多項(xiàng)式插值:示例給定的n+1個(gè)不同的點(diǎn)找到一個(gè)n次多項(xiàng)式,依次通過(guò)這n+1個(gè)點(diǎn)n次多項(xiàng)式必然唯一多項(xiàng)式插值:示例給定的n+1個(gè)不同的點(diǎn)多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

拉格朗日插值

拉格朗日插值

拉格朗日插值:2點(diǎn)情形

拉格朗日插值:2點(diǎn)情形

基函數(shù)的構(gòu)建:2點(diǎn)情形

基函數(shù)的構(gòu)建:2點(diǎn)情形

基函數(shù)的構(gòu)建:n+1點(diǎn)情形

基函數(shù)的構(gòu)建:n+1點(diǎn)情形

拉格朗日插值:n+1點(diǎn)情形

拉格朗日插值:n+1點(diǎn)情形

拉格朗日插值:誤差估計(jì)

拉格朗日插值:誤差估計(jì)

拉格朗日插值:示例

拉格朗日插值:示例

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

牛頓差商插值

牛頓差商插值

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:公式導(dǎo)出

牛頓差商插值:公式導(dǎo)出

牛頓差商插值:系數(shù)求解

牛頓差商插值:系數(shù)求解

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:反向差商

牛頓差商插值:反向差商

Hermite插值

Hermite插值

拉格朗日插值缺點(diǎn)插值多項(xiàng)式形狀、走向差異較大拉格朗日插值缺點(diǎn)插值多項(xiàng)式形狀、走向差異較大Hermite插值:優(yōu)勢(shì)

Hermite插值:優(yōu)勢(shì)

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

回憶拉格朗日基函數(shù)

回憶拉格朗日基函數(shù)

Hermite:其他

Hermite:其他

三次樣條插值:背景

三次樣條插值:背景

線段連接:粗糙相鄰兩點(diǎn)用線段連接形成折線,不夠光滑線段連接:粗糙相鄰兩點(diǎn)用線段連接三次樣條插值:特性

三次樣條插值:特性

三次樣條插值:邊界

三次樣條插值:邊界

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:應(yīng)用

三次樣條插值:應(yīng)用

多項(xiàng)式插值:對(duì)比多項(xiàng)式插值:對(duì)比參數(shù)曲線

參數(shù)曲線

參數(shù)曲線:圖像參數(shù)曲線:圖像三次參數(shù)曲線:定義

三次參數(shù)曲線:定義

三次參數(shù)曲線:構(gòu)造

三次參數(shù)曲線:構(gòu)造

三次函數(shù)曲線:圖像三次函數(shù)曲線:圖像Bezier曲線n+1個(gè)點(diǎn)分成n段,每一段都是三次參數(shù)曲線輸入:n+1個(gè)點(diǎn)n段上端點(diǎn)切向量上某一點(diǎn)輸出:n個(gè)三次多項(xiàng)式,作為Bezier曲線Bezier曲線n+1個(gè)點(diǎn)分成n段,Bezier曲線:形狀Bezier曲線:形狀Bezier曲線:特點(diǎn)改變某一段,不會(huì)對(duì)其他段產(chǎn)生影響常用于工業(yè)設(shè)計(jì)設(shè)計(jì)汽車外形Adobeillustrator可以方便繪制缺點(diǎn):不方便進(jìn)行誤差分析B樣條曲線可以更好地進(jìn)行誤差分析Bezier曲線:特點(diǎn)改變某一段,不會(huì)對(duì)其他段產(chǎn)生影響此課件下載可自行編輯修改,供參考!感謝您的支持,我們努力做得更好!此課件下載可自行編輯修改,供參考!插值法:原理與應(yīng)用ZhenhuaSong插值法:原理與應(yīng)用ZhenhuaSong插值的背景1.只有n個(gè)點(diǎn)處的函數(shù)值希望找到一條通過(guò)這些點(diǎn)的曲線(連續(xù)、光滑)2.函數(shù)太麻煩,近似簡(jiǎn)化找到一個(gè)好計(jì)算的函數(shù),近似代替3.用多項(xiàng)式代替多項(xiàng)式方便求值、求導(dǎo)、積分等插值的背景1.只有n個(gè)點(diǎn)處的函數(shù)值插值&逼近&擬合0.給定n個(gè)不同的點(diǎn),構(gòu)造曲線1.插值:曲線依次通過(guò)n個(gè)點(diǎn)2.逼近:曲線最接近n個(gè)點(diǎn)(接近:在某種意義下)例:最小二乘法3.擬合:插值+逼近插值&逼近&擬合0.給定n個(gè)不同的點(diǎn),構(gòu)造曲線泰勒展開在某一點(diǎn)x0處展開只在x0處近似性較好遠(yuǎn)離x0的點(diǎn)誤差較大需要n個(gè)點(diǎn)近似性較好插值可以勝任泰勒展開在某一點(diǎn)x0處展開一次插值用一次函數(shù)近似表示一次插值用一次函數(shù)近似表示二次插值用二次函數(shù)來(lái)表示二次插值用二次函數(shù)來(lái)表示多項(xiàng)式插值:示例給定的n+1個(gè)不同的點(diǎn)找到一個(gè)n次多項(xiàng)式,依次通過(guò)這n+1個(gè)點(diǎn)n次多項(xiàng)式必然唯一多項(xiàng)式插值:示例給定的n+1個(gè)不同的點(diǎn)多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

多項(xiàng)式插值:唯一性

拉格朗日插值

拉格朗日插值

拉格朗日插值:2點(diǎn)情形

拉格朗日插值:2點(diǎn)情形

基函數(shù)的構(gòu)建:2點(diǎn)情形

基函數(shù)的構(gòu)建:2點(diǎn)情形

基函數(shù)的構(gòu)建:n+1點(diǎn)情形

基函數(shù)的構(gòu)建:n+1點(diǎn)情形

拉格朗日插值:n+1點(diǎn)情形

拉格朗日插值:n+1點(diǎn)情形

拉格朗日插值:誤差估計(jì)

拉格朗日插值:誤差估計(jì)

拉格朗日插值:示例

拉格朗日插值:示例

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

Nevile迭代插值

牛頓差商插值

牛頓差商插值

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:系數(shù)確定

牛頓差商插值:公式導(dǎo)出

牛頓差商插值:公式導(dǎo)出

牛頓差商插值:系數(shù)求解

牛頓差商插值:系數(shù)求解

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:間距相等

牛頓差商插值:反向差商

牛頓差商插值:反向差商

Hermite插值

Hermite插值

拉格朗日插值缺點(diǎn)插值多項(xiàng)式形狀、走向差異較大拉格朗日插值缺點(diǎn)插值多項(xiàng)式形狀、走向差異較大Hermite插值:優(yōu)勢(shì)

Hermite插值:優(yōu)勢(shì)

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

Hermite:一階導(dǎo)數(shù)相同

回憶拉格朗日基函數(shù)

回憶拉格朗日基函數(shù)

Hermite:其他

Hermite:其他

三次樣條插值:背景

三次樣條插值:背景

線段連接:粗糙相鄰兩點(diǎn)用線段連接形成折線,不夠光滑線段連接:粗糙相鄰兩點(diǎn)用線段連接三次樣條插值:特性

三次樣條插值:特性

三次樣條插值:邊界

三次樣條插值:邊界

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:構(gòu)建

三次樣條插值:應(yīng)用

三次樣條插值:應(yīng)用

多項(xiàng)式插值:對(duì)比多項(xiàng)式插值:對(duì)比參數(shù)曲線

參數(shù)曲線

參數(shù)曲線:圖像參數(shù)曲線:圖像三次參數(shù)曲線:定義

三次參數(shù)曲線:定義

三次參數(shù)曲線:構(gòu)造

三次參數(shù)曲線:構(gòu)造

三次函數(shù)曲線:圖像三次函數(shù)曲線:圖像Bezier曲線n+1個(gè)點(diǎn)分成n段,每一段都是三次參數(shù)曲線輸入:n+1個(gè)點(diǎn)n段上端點(diǎn)切向量上某一點(diǎn)輸出:n個(gè)三次多項(xiàng)式,作為Bezier曲線Bezier曲線n+1個(gè)點(diǎn)分成n段,Bezier曲線:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論