2023屆福建省福州十九中學(xué)九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
2023屆福建省福州十九中學(xué)九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
2023屆福建省福州十九中學(xué)九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
2023屆福建省福州十九中學(xué)九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
2023屆福建省福州十九中學(xué)九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設(shè)點的運動路程為,的面積為,與的函數(shù)關(guān)系圖象如圖②所示,則邊的長為().A.3 B.4 C.5 D.62.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.3.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.已知關(guān)于x的一元二次方程xaxb0ab的兩個根為x1、x2,x1x2則實數(shù)a、b、x1、x2的大小關(guān)系為()A.a(chǎn)x1bx2 B.a(chǎn)x1x2b C.x1ax2b D.x1abx25.如圖,已知,是的中點,且矩形與矩形相似,則長為()A.5 B. C. D.66.如圖,⊙O是△ABC的外接圓,連接OA、OB,∠C=40°,則∠OAB的度數(shù)為()A.30° B.40° C.50° D.80°7.用配方法將方程變形為,則的值是()A.4 B.5 C.6 D.78.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.9.如圖,轉(zhuǎn)盤的紅、黃、藍、紫四個扇形區(qū)域的圓心角分別記為,,,.自由轉(zhuǎn)動轉(zhuǎn)盤,則下面說法錯誤的是()A.若,則指針落在紅色區(qū)域的概率大于0.25B.若,則指針落在紅色區(qū)域的概率大于0.5C.若,則指針落在紅色或黃色區(qū)域的概率和為0.5D.若,則指針落在紅色或黃色區(qū)域的概率和為0.510.下列各式與是同類二次根式的是()A. B. C. D.二、填空題(每小題3分,共24分)11.若3是關(guān)于x的方程x2-x+c=0的一個根,則方程的另一個根等于____.12.如果等腰△ABC中,,,那么______.13.若,則=___________.14.是關(guān)于的一元二次方程的一個根,則___________15.如圖,AB是⊙C的直徑,點C、D在⊙C上,若∠ACD=33°,則∠BOD=_____.16.如圖,在Rt△ABC中,∠ACB=90°,∠A=α,將△ABC繞點C按順時針方向旋轉(zhuǎn)后得到△EDC,此時點D在AB邊上,則旋轉(zhuǎn)角的大小為.17.計算__________.18.已知扇形的圓心角為,所對的弧長為,則此扇形的面積是________.三、解答題(共66分)19.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點,過點C做⊙O的切線,與AE的延長線交于點D,且AD⊥CD.(1)求證:AC平分∠DAB;(2)若AB=10,CD=4,求DE的長.20.(6分)在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用26m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)BC=xm.(1)若矩形花園ABCD的面積為165m2,求x的值;(2)若在P處有一棵樹,樹中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹圍在花園內(nèi)(考慮到樹以后的生長,籬笆圍矩形ABCD時,需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.21.(6分)用一段長為28m的鐵絲網(wǎng)與一面長為8m的墻面圍成一個矩形菜園,為了使菜園面積盡可能的大,給出了甲、乙兩種圍法,請通過計算來說明這個菜園長、寬各為多少時,面積最大?最大面積是多少?22.(8分)已知二次函數(shù).用配方法求該二次函數(shù)圖象的頂點坐標;在所給坐標系中畫出該二次函數(shù)的圖象,并直接寫出當時自變量的取值范圍.23.(8分)已知二次函數(shù)y=x2+2mx+(m2﹣1)(m是常數(shù)).(1)若它的圖象與x軸交于兩點A,B,求線段AB的長;(2)若它的圖象的頂點在直線y=x+3上,求m的值.24.(8分)如圖,AB是的直徑,點C,D在上,且BD平分∠ABC.過點D作BC的垂線,與BC的延長線相交于點E,與BA的延長線相交于點F.(1)求證:EF與相切:(2)若AB=3,BD=,求CE的長.25.(10分)如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠P=66°,求∠C.26.(10分)如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點D,函數(shù)(為常數(shù),)的圖象經(jīng)過點D,與AB交于點E,與函數(shù)的圖象在第三象限內(nèi)交于點F,連接AF、EF.(1)求函數(shù)的表達式,并直接寫出E、F兩點的坐標.(2)求△AEF的面積.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】當點在上運動時,面積逐漸增大,當點到達點時,結(jié)合圖象可得面積最大為1,得到與的積為12;當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,得到與的和為7,構(gòu)造關(guān)于的一元二方程可求解.【詳解】解:當點在上運動時,面積逐漸增大,當點到達點時,面積最大為1.∴,即.當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結(jié)合圖象可知點運動路徑長為7,∴.則,代入,得,解得或1,因為,即,所以.故選B.【點睛】本題主要考查動點問題的函數(shù)圖象,解題的關(guān)鍵是分析三角形面積隨動點運動的變化過程,找到分界點極值,結(jié)合圖象得到相關(guān)線段的具體數(shù)值.2、A【解析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關(guān)鍵.3、B【分析】中心對稱圖形繞某一點旋轉(zhuǎn)180°后的圖形與原來的圖形重合,軸對稱圖形被一條直線分割成的兩部分沿著對稱軸折疊時,互相重合,據(jù)此逐一判斷出既是軸對稱圖形又是中心對稱圖形的是哪個即可.【詳解】A是軸對稱圖形,不是中心對稱圖形,故選項錯誤;B既是軸對稱圖形,又是中心對稱圖形,故選項正確;C不是軸對稱圖形,是中心對稱圖形,故選項錯誤;D不是軸對稱圖形,是中心對稱圖形,故選項錯誤;故選B【點睛】本題考查了軸對稱圖形和中心對稱圖形的判斷,掌握其定義即可快速判斷出來.4、D【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】如圖,設(shè)函數(shù)y=(x?a)(x?b),當y=0時,x=a或x=b,當y=時,由題意可知:(x?a)(x?b)?=0(a<b)的兩個根為x1、x2,由于拋物線開口向上,由拋物線的圖象可知:x1<a<b<x2故選:D.【點睛】本題考查一元二次方程,解題的關(guān)鍵是正確理解一元二次方程與二次函數(shù)之間的關(guān)系,本題屬于中等題型.5、B【分析】根據(jù)相似多邊形的性質(zhì)列出比例式,計算即可.【詳解】解:∵矩形ABDC與矩形ACFE相似,∴,∵,是的中點,∴AE=5∴,解得,AC=5,故選B.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的對應(yīng)邊的比相等是解題的關(guān)鍵.6、C【分析】直接利用圓周角定理得出∠AOB的度數(shù),再利用等腰三角形的性質(zhì)得出答案.【詳解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故選:C.【點睛】本題主要考查了三角形的外接圓與外心,圓周角定理.正確得出∠AOB的度數(shù)是解題關(guān)鍵.7、B【分析】將方程用配方法變形,即可得出m的值.【詳解】解:,配方得:,即,則m=5.故選B.【點睛】本題考查了配方法,解題的關(guān)鍵是利用完全平方公式對方程進行變形.8、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.9、C【分析】根據(jù)概率公式計算即可得到結(jié)論.【詳解】解:A、∵α>90°,,故A正確;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正確;C、∵α-β=γ-θ,

∴α+θ=β+γ,∵α+β+γ+θ=360°,

∴α+θ=β+γ=180°,∴指針落在紅色或紫色區(qū)域的概率和為0.5,故C錯誤;

D、∵γ+θ=180°,

∴α+β=180°,∴指針落在紅色或黃色區(qū)域的概率和為0.5,故D正確;

故選:C.【點睛】本題考查了概率公式,熟練掌握概率公式是解題的關(guān)鍵.10、A【分析】根據(jù)同類二次根式的概念即可求出答案.【詳解】解:(A)原式=2,故A與是同類二次根式;(B)原式=2,故B與不是同類二次根式;(C)原式=3,故C與不是同類二次根式;(D)原式=5,故D與不是同類二次根式;故選:A.【點睛】此題主要考查了同類二次根式的定義,正確化簡二次根式是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、-1【解析】已知3是關(guān)于x的方程x1-5x+c=0的一個根,代入可得9-3+c=0,解得,c=-6;所以由原方程為x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一個根是x=-1.12、;【分析】過點作于點,過點作于點,由于,所以,,根據(jù)勾股定理以及銳角三角函數(shù)的定義可求出的長度.【詳解】解:過點作于點,過點作于點,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案為:.【點睛】本題考查解直角三角形,涉及銳角三角函數(shù)的定義,需要學(xué)生靈活運用所學(xué)知識.13、【分析】根據(jù)題干信息,利用已知得出a=b,進而代入代數(shù)式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質(zhì),正確得出a=b,并利用代入代數(shù)式求值是解題關(guān)鍵.14、-1【分析】將x=-1代入一元二次方程,即可求得c的值.【詳解】解:∵x=-1是關(guān)于x的一元二次方程的一個根,

∴,∴c=-1,

故答案:-1.【點睛】本題考查了一元二次方程的解的定義,是基礎(chǔ)知識比較簡單.15、114°.【分析】利用圓周角定理求出∠AOD即可解決問題.【詳解】∵∠AOD=2∠ACD,∠ACD=33°,∴∠AOD=66°,∴∠BOD=180°﹣66°=114°,故答案為114°.【點睛】本題考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理.16、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋轉(zhuǎn)的性質(zhì)可得:CB=CD,根據(jù)等邊對等角的性質(zhì)可得∠CDB=∠B=90°﹣α,然后由三角形內(nèi)角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋轉(zhuǎn)的性質(zhì)可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋轉(zhuǎn)角的大小為2α.17、【分析】先把特殊角的三角函數(shù)值代入原式,再計算即得答案.【詳解】解:原式=.故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題型,熟記特殊角的三角函數(shù)值、正確計算是關(guān)鍵.18、【分析】利用弧長公式列出關(guān)系式,把圓心角與弧長代入求出扇形的半徑,即可確定出扇形的面積.【詳解】設(shè)扇形所在圓的半徑為r.∵扇形的圓心角為240°,所對的弧長為,∴l(xiāng),解得:r=6,則扇形面積為rl=.故答案為:.【點睛】本題考查了扇形面積的計算,以及弧長公式,熟練掌握公式是解答本題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(1)DE=1【分析】(1)連接OC,利用切線的性質(zhì)可得出OC∥AD,再根據(jù)平行線的性質(zhì)得出∠DAC=∠OCA,又因為∠OCA=∠OAC,繼而可得出結(jié)論;(1)方法一:連接BE交OC于點H,可證明四邊形EHCD為矩形,再根據(jù)垂徑定理可得出,得出,從而得出,再通過三角形中位線定理可得出,繼而得出結(jié)論;方法二:連接BC、EC,可證明△ADC∽△ACB,利用相似三角形的性質(zhì)可得出AD=8,再證△DEC∽△DCA,從而可得出結(jié)論;方法三:連接BC、EC,過點C做CF⊥AB,垂足為F,利用已知條件得出OF=3,再證明△DEC≌△CFB,利用全等三角形的性質(zhì)即可得出答案.【詳解】解:(1)證明:連接OC,∵CD切☉O于點C∴OC⊥CD∵AD⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC平分DAB(1)方法1:連接BE交OC于點H∵AB是☉O直徑∴∠AEB=90°∴∠DEC=90°∴四邊形EHCD為矩形∴CD=EH=4DE=CH∴∠CHE=90°即OC⊥BH∴EH=BE=4∴BE=8∴在Rt△AEB中AE=6∵EH=BHAO=BO∴OH=AE=3∴CH=1∴DE=1方法1:連接BC、EC∵AB是直徑∴∠ACB=90°∴∠D=∠ACB∵∠DAC=∠CAB∴△ADC∽△ACB∴∠B=∠DCA∴AC1=10·AD∵AC1=AD1+CD1∴10·AD=AD1+16∴AD=1舍AD=8∵四邊形ABCE內(nèi)接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴∠DEC=∠DCA∵∠D=∠D∴△DEC∽△DCA∴∴CD1=AD·DE∴16=8·DE∴DE=1;方法3:連接BC、EC,過點C做CF⊥AB,垂足為F∵CD⊥AD,∠DAC=∠CAB∴CD=CF=4,∠D=∠CFB=90°∵AB=10∴OC=OB=5∴OF=3∴BF=OB-OF=5-3=1∵四邊形ABCE內(nèi)接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴△DEC≌△CFB∴DE=FB=1.【點睛】本題是一道關(guān)于圓的綜合題目,涉及的知識點有切線的性質(zhì)、平行線的性質(zhì)、矩形的性質(zhì)、相似三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)等,綜合利用以上知識點是解此題的關(guān)鍵.20、(1)x的值為11m或15m;(2)花園面積S的最大值為168平方米.【分析】(1)直接利用矩形面積公式結(jié)合一元二次方程的解法即可求得答案;(2)首先得到S與x的關(guān)系式,進而利用二次函數(shù)的增減性即可求得答案.【詳解】(1)∵AB=xm,則BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值為11m或15m;(2)由題意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由題意得:14≤x≤19,∵-1<0,14≤x≤19,∴S隨著x的增大而減小,∴x=14時,S取到最大值為:S=﹣(14﹣13)2+169=168,答:花園面積S的最大值為168平方米.【點睛】本題考查了二次函數(shù)的應(yīng)用以及一元二次方程的解法,正確結(jié)合二次函數(shù)的增減性求得最值是解題的關(guān)鍵.21、當矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【分析】根據(jù)矩形的面積公式甲圖列出算式可以直接求面積,乙圖設(shè)垂直于墻的一邊為x,則另一邊為(18﹣x)(包括墻長)列出二次函數(shù)解析式即可求解.【詳解】解:如圖甲:設(shè)矩形的面積為S,則S=8×(18﹣8)=2.所以當菜園的長、寬分別為10m、8m時,面積為2;如圖乙:設(shè)垂直于墻的一邊長為xm,則另一邊為(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因為﹣1<0,當x=9時,S有最大值為81,所以當矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.綜上:當矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【點睛】本題考查了二次函數(shù)的應(yīng)用,難度一般,關(guān)鍵在于找到等量關(guān)系列出方程求解,另外注意配方法求最大值在實際中的應(yīng)用22、(1)頂點坐標為;(2)圖象見解析,由圖象得當時.【分析】(1)用配方法將函數(shù)一般式轉(zhuǎn)化為頂點式即可;(2)采用列表描點法畫出二次函數(shù)圖象即可,根據(jù)函數(shù)圖象,即可判定當時自變量的取值范圍.【詳解】..頂點坐標為列表:············圖象如圖所示由圖象得當時.【點睛】此題主要考查二次函數(shù)頂點式以及圖象的性質(zhì),熟練掌握,即可解題.23、AB=2;(2)m=1.【分析】(1)令y=0求得拋物線與x軸的交點,從而求得兩交點之間的距離即可;(2)用含m的式子表示出頂點坐標,然后代入一次函數(shù)的解析式即可求得m的值.【詳解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函數(shù)y=x2+2mx+(m2﹣1),∴頂點坐標為(﹣2m,),即:(﹣2m,﹣1),∵圖象的頂點在直線y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【點睛】本題考查了解二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論