版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點D是量角器上60°刻度線的外端點,連接CD交AB于點E,則∠CEB的度數(shù)為()A.60° B.65° C.70° D.75°2.將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第7個圖形的小圓個數(shù)是()A.56 B.58 C.63 D.723.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.104.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數(shù)解C.當時,方程有兩個相等的實數(shù)解D.當時,方程總有兩個不相等的實數(shù)解5.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE6.每個人都應懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差7.正比例函數(shù)y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.8.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.9.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定10.中國古代在利用“計里畫方”(比例縮放和直角坐標網(wǎng)格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.函數(shù)y=2xx+5的自變量x12.計算()()的結果等于_____.13.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.14.若正六邊形的內切圓半徑為2,則其外接圓半徑為__________.15.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.16.已知一個正多邊形的內角和是外角和的3倍,那么這個正多邊形的每個內角是_____度.三、解答題(共8題,共72分)17.(8分)某種型號油電混合動力汽車,從A地到B地燃油行駛需純燃油費用76元,從A地到B地用電行駛需純用電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元.求每行駛1千米純用電的費用;若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少需用電行駛多少千米?18.(8分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.19.(8分)今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表:對霧霾的了解程度
百分比
A.非常了解
5%
B.比較了解
m
C.基本了解
45%
D.不了解
n
請結合統(tǒng)計圖表,回答下列問題.(1)本次參與調查的學生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統(tǒng)計圖;(4)根據(jù)調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規(guī)則是否公平.20.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數(shù)關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.21.(8分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?22.(10分)如圖,直角△ABC內接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.23.(12分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學知識探索它的最大面積(結果保留根號)24.如圖,已知△ABC,請用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
解:連接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故選:D2、B【解析】試題分析:第一個圖形的小圓數(shù)量=1×2+2=4;第二個圖形的小圓數(shù)量=2×3+2=8;第三個圖形的小圓數(shù)量=3×4+2=14;則第n個圖形的小圓數(shù)量=n(n+1)+2個,則第七個圖形的小圓數(shù)量=7×8+2=58個.考點:規(guī)律題3、A【解析】
作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.4、C【解析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數(shù)解,當且時,方程有兩個不相等的實數(shù)解.綜上所述,說法C正確.故選C.5、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.6、B【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結合前兩組的頻數(shù)知第6、7個數(shù)據(jù)的平均數(shù),可得答案.【詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個數(shù)據(jù)的平均數(shù),即5+52∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.故選B.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計算方法是解題的關鍵.7、B【解析】試題解析:由圖象可知,正比函數(shù)y=2kx的圖象經(jīng)過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數(shù)y=(k?2)x+1?k圖象經(jīng)過一、二、四象限,故選B.8、B【解析】
先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據(jù)等式關系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應用,找準其中的等式關系式解答此題的關鍵.9、A【解析】
根據(jù)角平分線的性質和點與直線的位置關系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關系,關鍵是根據(jù)角平分線的性質解答.10、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠﹣1【解析】
根據(jù)分母不等于2列式計算即可得解.【詳解】解:根據(jù)題意得x+1≠2,解得x≠﹣1.故答案為:x≠﹣1.【點睛】考查的知識點為:分式有意義,分母不為2.12、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.13、【解析】
根據(jù)圖形可得每增加一個金魚就增加6根火柴棒即可解答.【詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數(shù)是8+6(n-1)=6n+2.故答案為6n+2【點睛】本題考查數(shù)字規(guī)律問題,通過歸納與總結,得到其中的規(guī)律是解題關鍵.14、【解析】
根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內接圓和外接圓,關鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.15、1【解析】
如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據(jù)兩點之間線段最短解決最短問題.16、1.【解析】
先由多邊形的內角和和外角和的關系判斷出多邊形的邊數(shù),即可得到結論.【詳解】設多邊形的邊數(shù)為n.因為正多邊形內角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內角是180°故答案為:1.【點睛】考查多邊形的內角和與外角和,熟練掌握多邊形內角和公式是解題的關鍵.三、解答題(共8題,共72分)17、(1)每行駛1千米純用電的費用為0.26元.(2)至少需用電行駛74千米.【解析】
(1)根據(jù)某種型號油電混合動力汽車,從A地到B地燃油行駛純燃油費用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元,可以列出相應的分式方程,然后解分式方程即可解答本題;(2)根據(jù)(1)中用電每千米的費用和本問中的信息可以列出相應的不等式,解不等式即可解答本題.【詳解】(1)設每行駛1千米純用電的費用為x元,根據(jù)題意得:=解得:x=0.26經(jīng)檢驗,x=0.26是原分式方程的解,答:每行駛1千米純用電的費用為0.26元;(2)從A地到B地油電混合行駛,用電行駛y千米,得:0.26y+(﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用電行駛74千米.18、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內角和定理及等式性質得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質得到兩對邊相等,兩個角為60°,利用等式的性質得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點為△ABC的費馬點.考點:相似形綜合題19、解:(1)400;15%;35%.(2)1.(3)∵D等級的人數(shù)為:400×35%=140,∴補全條形統(tǒng)計圖如圖所示:(4)列樹狀圖得:∵從樹狀圖可以看出所有可能的結果有12種,數(shù)字之和為奇數(shù)的有8種,∴小明參加的概率為:P(數(shù)字之和為奇數(shù));小剛參加的概率為:P(數(shù)字之和為偶數(shù)).∵P(數(shù)字之和為奇數(shù))≠P(數(shù)字之和為偶數(shù)),∴游戲規(guī)則不公平.【解析】(1)根據(jù)“基本了解”的人數(shù)以及所占比例,可求得總人數(shù):180÷45%=400人.在根據(jù)頻數(shù)、百分比之間的關系,可得m,n的值:.(2)根據(jù)在扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應的扇形圓心的度數(shù)與360°的比可得出統(tǒng)計圖中D部分扇形所對應的圓心角:360°×35%=1°.(3)根據(jù)D等級的人數(shù)為:400×35%=140,據(jù)此補全條形統(tǒng)計圖.(4)用樹狀圖或列表列舉出所有可能,分別求出小明和小剛參加的概率,若概率相等,游戲規(guī)則公平;反之概率不相等,游戲規(guī)則不公平.20、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】
(1)由矩形性質知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當點P在線段AB上運動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當點P在射線AB上運動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當t=0或t=4時,顯然符合條件的⊙F不存在;②當0<t<4時,如解圖1,作FG⊥BC于點G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時⊙F的半徑PF=;③當t>4時,如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時⊙F的半徑PF=12.【點睛】本題主要考查了矩形的性質,勾股定理,動點的函數(shù)為題,切線的性質,相似三角形的判定與性質及分類討論的數(shù)學思想.解題的關鍵是熟練掌握切線的性質、矩形的性質及相似三角形的判定與性質.21、(1)甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)他們最多可購買11棵乙種樹苗.【解析】
(1)可設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,根據(jù)等量關系:用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同,列出方程求解即可;(2)可設他們可購買y棵乙種樹苗,根據(jù)不等關系:再次購買兩種樹苗的總費用不超過1500元,列出不等式求解即可.【詳解】(1)設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,依題意有480x+10解得:x=30,經(jīng)檢驗,x=30是原方程的解,x+10=30+10=40,答:甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)設他們可購買y棵乙種樹苗,依題意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y為整數(shù),∴y最大為11,答:他們最多可購買11棵乙種樹苗.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找準等量關系與不等關系列出方程或不等式是解決問題的關鍵.22、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長PO交圓于G點,∵PF×PG=PC考點:切線的判定;切割線定理.23、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質可求得AD?C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考物理總復習專題十電磁感應第3講電磁感應定律的綜合應用練習含答案
- 勞務分包合同價款確定技巧
- 2023年華僑生聯(lián)考英語作文真題
- 廣東省肇慶市高中英語 Unit 4 Astronomy the science of the starsReading教案 新人教版必修3
- 九年級化學上冊 第1單元 步入化學殿堂 到實驗室去 化學實驗基本技能訓練(一)教案(2)(新版)魯教版
- 2024年一年級品生下冊《班級小公約》教案 未來版
- 2024年九年級化學上冊 5.1 質量守恒定律教案(pdf)(新版)新人教版
- 2024-2025學年高中物理 第一章 動量守恒定律 3 動量守恒定律教案 新人教版選擇性必修第一冊
- 2024年四年級英語下冊 Unit 8 What Can You Do Lesson 2教案 陜旅版(三起)
- 山東濟南槐蔭區(qū)2024-2025學年七年級數(shù)學第一學期期中考試試題(含答案)
- 工作方案組織保障措施
- 工傷賠償?shù)拇_認書范文合集3篇
- 塵肺病的知識講座
- 2024年度《給教師的一百條建議》讀后感課件
- 拔牙護理查房
- 發(fā)改委項目可行性研究報告編寫指南
- 《上海車展報告》課件
- 數(shù)學象棋:將數(shù)學應用于象棋策略和思考
- 大學生生涯規(guī)劃與職業(yè)發(fā)展智慧樹知到期末考試答案2024年
- 消毒供應室護理查房
- 年產十二萬噸天然橙汁食品工廠設計樣本
評論
0/150
提交評論